Research-informed pedagogical innovation at scale in school mathematics and science education

Kenneth Ruthven

University of Cambridge
The National Strategies:
Pedagogical experiment at systemic scale

• A systemic school improvement programme
 – Introduced to primary schools from 1998
 (informally) and 1999 (formally)
 – Extended to lower secondary for student cohorts
 entering 2001 (mathematics) & 2002 (science)

• Independent evidence of impact provided by regular
 international study series such as TIMSS and PISA
 – Data gathered about attitude as well as attainment
 – Comparison across systems and between subjects
The National Strategies:
The influence of pedagogical research

• Main basis was a predominantly American body of “process-product” research on effective teaching
• Core model of “active teaching” had been validated in relation to basic mathematical knowledge and skills
• Other research suggested that “additional classroom processes… needed to enhance higher order thinking:
 – a focus on meaning and understanding…,
 – direct teaching of higher level cognitive strategies and problem-solving,…
 – co-operative small group work.”

 (Reynolds & Muijs, 1999, p. 281)
The National Strategies:
Key features of the pedagogical model

• Derived from “active teaching” linked to “target setting”, placing emphasis on:
 – A detailed schedule of objectives to guide lessons
 – A three-part template for lesson structure
 – Whole-class interaction for pace and progress
 – A system of attainment levels to describe progress
 – Regular target setting, assessment and feedback
The National Strategies: Impact on student attainment

Mathematics

- Proportion of students attaining KS3 L6+
- TIMSS LH+
- PISA L4+

Science

- Proportion of students attaining KS3 L6+
- TIMSS LH+
- PISA L4+
The National Strategies: Impact on student attitude

Mathematics

Science

Proportion of students reporting
- Enjoy/Like
- Value
- Confident

<table>
<thead>
<tr>
<th>Cohort by year of secondary entry</th>
<th>1996</th>
<th>2000</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A controlled international overview: Systemic change between cohorts

TIMSS result
- 1996 entry
- 2004 entry
A controlled international overview: Systemic reform in Massachusetts

• Systemic improvement programme
 – based on establishing common professional standards and ambitious achievement targets
 – backed by extensive professional development and strong accountability mechanisms

• Normative pedagogical model
 – influenced by more recent research addressing development of higher-order thinking
Approaches to research synthesis

• Basic pedagogical model for National Strategies formulated through politicised process that filtered out more innovative and recently researched approaches

• Future policy and practice would benefit from taking account of more rigorous approaches to synthesis:
 – Systematic review
 – Best evidence synthesis iteration
 – Meta-analytic approaches
Approaches to research synthesis: Systematic review

- Programme established by UK Department for Education via the Evidence for Policy and Practice Information and Coordination Centre (EPPI-Centre)
 - Follows standard stages
 - Aims to use explicit, transparent methods
 - Involves range of users to ensure relevance
- Example of the review of *Strategies to raise pupils’ motivational effort in Key Stage 4 Mathematics*
 - Very specific focus over limited time period
 - 25 relevant studies identified
 - Only one study provided high weight of evidence
Approaches to research synthesis: Iterative best-evidence synthesis

- Programme established by NZ Ministry of Education
 - Uses research literature to identify what is effective in education for diverse learners
 - Adopts health-of-the-system view that requires dialogue across professional constituencies
- Example of *Effective Pedagogy in Mathematics*
 - Drew on NZ literature complemented by work from other countries with similar characteristics.
 - Identified seminal “landmark” studies to pinpoint how quality teaching might be characterised
 - Derived a common pedagogical principles that appear to hold good across people and settings
Approaches to research synthesis: Meta-analysis incl. best-evidence synthesis

• Meta-analysis is a well-established approach to summarising studies of the effects of teaching processes on student learning
 – systematically searches for relevant studies and screens them according to explicit criteria
 – classifies the types of teaching process and learning outcome in each accepted study
 – estimates effects through statistical aggregation
• Meta-analytic best-evidence synthesis (Slavin, 1986) adds summary description of each contributing study
Recent research synthesis on pedagogy: Triangulating the meta-analytic studies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>Science</td>
<td>Both Ma & Sc</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Conceptual framework</td>
<td>Science teaching</td>
<td>Cognitive modelling</td>
<td>Instructional interventions</td>
</tr>
<tr>
<td>Teaching construct</td>
<td>Teaching strategies</td>
<td>Learning components</td>
<td>Instructional programs</td>
</tr>
<tr>
<td>Field location</td>
<td>Restricted: Only US</td>
<td>Unrestricted: Mainly US, Eur</td>
<td>Unrestricted: Mainly US</td>
</tr>
<tr>
<td>Duration</td>
<td>Unrestricted</td>
<td>Unrestricted</td>
<td>At least 12 wks</td>
</tr>
<tr>
<td>Outcomes examined</td>
<td>Achievement</td>
<td>Achievement Attitude</td>
<td>Achievement</td>
</tr>
</tbody>
</table>
Recent research synthesis on pedagogy: Triangulating meta-analytic screening

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental comparison or evaluation</td>
<td>Experimental comparison or evaluation</td>
<td>Correlational survey or experimental comparison</td>
<td>Randomised or matched experimental comparison</td>
</tr>
<tr>
<td>Prior control not required</td>
<td>Prior control</td>
<td>Prior control</td>
<td>No large gaps</td>
</tr>
<tr>
<td>Effect sizes included</td>
<td>Relative Absolute</td>
<td>Relative only</td>
<td>Relative only</td>
</tr>
<tr>
<td>Outcome measures accepted</td>
<td>Unrestricted: Generally researcher developed</td>
<td>Unrestricted: Standardised & researcher developed</td>
<td>Screened for intervention bias: Mainly standardised</td>
</tr>
</tbody>
</table>
Recent research synthesis on pedagogy: Meta-analytic findings on attainment effects

<table>
<thead>
<tr>
<th>Method</th>
<th>Mathematics</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slavin et al.</td>
<td>Seidel & Shavelson</td>
</tr>
<tr>
<td>Domain-specific inquiry</td>
<td>No cognate category</td>
<td>0.37 [22]</td>
</tr>
<tr>
<td>Co-operative groupwork</td>
<td>0.36 [17]</td>
<td>-0.04 [42]</td>
</tr>
<tr>
<td>Enhanced context</td>
<td>No cognate category</td>
<td>No cognate category</td>
</tr>
<tr>
<td>Active teaching</td>
<td>0.43 [10]</td>
<td>No cognate category</td>
</tr>
</tbody>
</table>
Recent research synthesis on pedagogy: Meta-analytic findings on attitude effects

<table>
<thead>
<tr>
<th></th>
<th>Mathematics</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seidel & Shavelson</td>
<td>Seidel & Shavelson</td>
</tr>
<tr>
<td>Domain-specific inquiry</td>
<td>____ [<5]</td>
<td>0.35 [7]</td>
</tr>
<tr>
<td>Co-operative groupwork</td>
<td>0.02 [9]</td>
<td>0.41 [14]</td>
</tr>
<tr>
<td>Enhanced context</td>
<td>No cognate category</td>
<td>No cognate category</td>
</tr>
<tr>
<td>Active teaching</td>
<td>No cognate category</td>
<td>No cognate category</td>
</tr>
</tbody>
</table>
Recent research synthesis: Triangulating wider findings on identity and attitude

BES iteration on effective mathematics teaching
• Teaching that takes students’ mathematical thinking seriously is underpinned by principles such as:
 – all students being empowered to develop mathematical identities and knowledge
 – interpersonal respect, sensitivity, fairness and consistency being shown to all students

EPPI review on motivational effort in mathematics
• Effective pedagogical strategies are characterised by:
 – a caring and supportive classroom climate
 – activities which pupils find challenging and enjoyable
 – pupils gaining deeper understanding of mathematics
 – opportunities for pupils to collaborate
Recent research synthesis: Triangulating wider findings on co-operative groupwork

BES iteration on effective mathematics teaching
- Small-group work can support engagement
- Students may need opportunities to think quietly
- Many students are reluctant to share their thinking

EPPI review of group discussions in science teaching
- Students often struggle to express coherent arguments, and demonstrate a low level of engagement with tasks
- Groups function best, understanding improves most:
 - with groups constituted so that differing views voiced
 - when students receive training on group processes
 - when “cues” support the structuring of discussions
Research-informed conclusions for pedagogical improvement at scale

• In mathematics, varied sources agree that the active teaching model promoted by the Strategies is effective in securing content knowledge and skills but less so in developing higher-order and functional thinking.

• There is little support for this teaching model in science.

• Domain-specific enquiry that takes students’ thinking seriously strengthens attainment and (plausibly) attitude.

• Co-operative groupwork strengthens attainment and (at least in science) attitude, as long as students are properly prepared and activity well supported.

• Enhanced context, linked to student experiences and interests, is beneficial (at least for science attainment).
effecting principled improvement in STEM education