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Abstract: This paper examines three important facets of the incorporation of new 
technologies into educational practice, focusing on emergent usages of the mathematical tools 
of computer algebra and dynamic geometry. First, it illustrates the interpretative flexibility of 
these tools, highlighting important differences in ways of conceptualizing and employing 
them that reflect their appropriation to contrasting practices of mathematics teaching. Second, 
it examines the cultural process of instrumental evolution in which mathematical frameworks 
and teaching practices are adapted in response to new possibilities created by these tools, 
showing that such evolution remains at a relatively early stage. Third, it points to crucial 
prerequisites, at both classroom and systemic levels, for effective institutional adoption of 
such tools: explicit recognition of the interplay between the development of instrumental and 
mathematical knowledge, including the establishment of a recognized repertoire of tool-
mediated mathematical techniques supported by appropriate discourses of explanation and 
justification. 
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The Incorporation of New Technologies in Educational Practice as a Process 

of Appropriation 
This paper examines three important facets of the incorporation of new technologies into 
educational practice: interpretative flexibility, instrumental evolution, and institutional 
adoption. While it focuses on the particular case of secondary-school mathematics, and the 
specific examples of computer algebra and dynamic geometry, the sociocultural concepts 
which it employs have a much wider applicability. Essentially, they are valuable in analyzing 
crucial aspects of the appropriation of new tools to curricular purposes and teaching practices. 
From this perspective, appropriation is treated not simply as a matter of adopting a tool and 
developing capacity for using it, but as a process by which the tool is integrated into a wider 
cultural practice. In particular, this process of integration is seen as involving reciprocal 
adaptation. On the one hand, the way in which a new tool is applied to existing tasks is 
shaped by already established approaches. On the other hand, as users internalize the 
mediation of such tasks by the new tool and make corresponding adjustments, this opens the 
way to more substantial changes of approach. 
 

The Developmental Histories of Computer Algebra and Dynamic Geometry 
in Educational Practice 

There is an important difference between the developmental histories of the two forms of 
mathematical software to be considered: dynamic geometry has been formulated more 
explicitly and designed more deliberately for educational use, whereas computer algebra has 
been developed primarily to meet the needs of professional mathematicians, even if some 
recent versions have been adapted for an educational market (Hoyles & Noss, 2003). Thus, 
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while both technologies have been the focus of exploratory projects piloting their use at 
secondary-school level, the mainstream uptake of dynamic geometry has been more 
longstanding and more widespread. In particular, whereas several studies have now been 
undertaken of the classroom practice of ordinary teachers using dynamic geometry under 
everyday circumstances (e.g. Engström, 2004; Lins, 2003; Ruthven, Hennessy & Deaney, 
2008), similar studies are currently lacking for computer algebra, although the classroom 
practice of teachers involved in pilot projects has been examined (e.g. Artigue, 2002; Kendal, 
Stacey & Pierce, 2005).  
 

The Interpretative Flexibility of Technologies: Design Continues in Usage 
However established the physical and operational prototype for a tool, however accepted the 
expectations about aims and methods for its use, there is scope for these to be expanded and 
adapted, reshaped or reconceived. This ‘interpretative flexibility’ which surrounds any 
technology can be seen in the varied conceptions of its functionalities and modes of use which 
come into play, not only during its evolving design, but in the course of its propagation as a 
finished product, and of its appropriation as a practical tool (Kline & Pinch, 1999; Williams & 
Edge, 1996). In particular, the process through which a technology becomes aligned with user 
concerns and adapted to use settings opens the way to variation in conceptions and usages 
between different user groups, and to change in these over time (which may, in turn, 
precipitate redesign of the tool). In this sociocultural model, “design continues in usage” 
(Rabardel & Bourmaud, 2003, p. 666), and “the conceptualization of instruments [is] an 
activity distributed between designers and users” (Rabardel & Waern, 2003, p. 643). In 
particular, teachers interpret educational resources and mediate their students’ use of them 
(Haggarty & Pepin, 2002; Remillard, 2005); they necessarily incorporate such materials into 
wider systems of classroom practice, so that, rather than determining such practice, the 
designs of their developers turn out to be only one component of it (Ball & Cohen, 1996). 
Various aspects of this interpretative flexibility will be illustrated in the next five sections of 
the paper. 
 

The Interpretative Flexibility of Dynamic Geometry: From Innovative 
Advocacy to Mainstream Uptake 

Innovative advocacy for dynamic geometry has cast it as a means of supporting approaches to 
school mathematics based on relatively open student exploration, experimentation and 
investigation (Balacheff & Kaput, 1996; Chazan & Yerushalmy, 1995; Hoyles & Noss, 
2003). However, pioneering projects have shown that teachers find it challenging to conceive 
appropriate tasks, and to manage student traversal of a mathematics curriculum organized in 
such a way (Laborde, 2001; Lampert, 1993; Wiske & Houde, 1993). Indeed, the findings of a 
substantial national survey conducted in the United States identified an apparent enigma. 
While many high-school mathematics teachers nominated Geometer’s Sketchpad as their 
most valued software, they tended also to report skill-development as their main objective for 
computer use (Becker, Ravitz & Wong, 1999). This enigma is illuminated by a more recent 
English study of the incorporation of dynamic geometry into mainstream practice which 
found that many teachers saw dynamic geometry as helping to make forms of guided 
discovery viable in the classroom, typically through structured ‘investigations’ aimed at 
establishing standard results (Ruthven, Hennessy & Deaney, 2008).  
 

Diverging Modes of Dynamic Geometry Use in the Classroom: The Place of 
Student Experience and Apparent Anomaly 

This English study also found interpretative flexibility running across teacher users in the 
form of significant variability in their approaches to the classroom use of dynamic geometry. 
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These differences were associated with contrasting conceptions of the software and linked to 
more general divergences of teaching approach. First, the degree to which teachers planned 
for students themselves to experience use of the software was influenced by the extent to 
which this was seen as involving students in mathematically disciplined interaction with an 
inherently geometric system. Second, the way in which teachers handled apparent 
mathematical anomalies of software operation was influenced by whether such anomalies 
were seen as providing opportunities to develop students’ mathematical understanding. Such 
a view was associated, in turn, with a more fundamental pedagogical orientation in which 
analysis of mathematical discrepancies was seen as supporting students’ learning. This 
variability is illustrated by the contrasting classroom approaches followed by two teachers in 
their lessons on the angle sums of polygons. In one lesson, the development of ideas was 
organized around teacher-led presentation and questioning, with the teacher taking sole 
responsibility for operating the software and exercising great care to avoid exposing students 
to apparent anomalies in its operation (such as those relating to measurement of reflex angles 
and rounding of results, as shown in Figure 1). In the other lesson, the development of ideas 
was organized around task-focused use of the software by students, structured and shaped by 
the teacher in ways considered beneficial for building mathematical knowledge –including 
having students construct figures for themselves, and expecting them to identify apparent 
anomalies of operation and try to make mathematical sense of them. 

 

Angle sum = 394.1°

72.0° 79.0°

60.0°
107.0°

76.0°

 
Figure 1: Apparent mathematical anomalies in a dynamic geometry investigation  

 
Diverging Modes of Dynamic Geometry Use: The Choice of Mathematical 

Register and Reasoning Modality  
Much of the pioneering development of dynamic geometry systems has taken place in 
countries – notably France and the United States – which have retained a classical Euclidean 
spirit within their school geometry curriculum (Hoyles, Foxman & Küchemann, 2001). 
However, the scope to employ the software as a means of supporting observation and 
experiment resonates with the more empirical style found in many systems (Hoyles, Foxman 
& Küchemann, 2001; Howson, 1995). In particular, once the scope of dynamic geometry 
systems had been extended beyond classical methods of construction and transformation to 
provide tools for measurement and calculation, the software became well adapted to empirical 
approaches in which geometric properties are established through induction from arithmetic 
patterns. Given that such an approach is well established in English secondary-school 
mathematics (Kaiser, 2002), where the national curriculum talks of ‘shape, space and 
measures’ rather than ‘geometry’,  the use of dynamic geometry to support this modality of 
reasoning about geometric situations within a primarily arithmetic register (as illustrated in 
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Figure 1) was found to be very prevalent in the English study (Ruthven, Hennessy & Deaney, 
2008). Nevertheless, the study also found an outlier case in which a teacher employed 
dynamic geometry as a means of “going beyond the national curriculum” to work in a directly 
geometric register, so as to give students access to the classical ‘geometry’ tradition now 
largely dormant in English schools. The examples of this section and the last, then, illustrate 
the role that broader mathematical cultures and teaching practices play in the interpretation 
and appropriation of dynamic geometry by teachers. 
 

Diverging Modes of Computer Algebra Use: Instrument of Accurate 
Computation or of Cross-Representational Understanding 

The origins of computer algebra as a tool for professional mathematicians mean that its use at 
school level necessitates some interpretation of its educational function and value. This is 
illustrated by the account which Kendal and colleagues (Kendal & Stacey, 2001; Kendal, 
Stacey & Pierce, 2005) provide, from an Australian project, of contrasting approaches taken 
by teachers to incorporating CAS into their classroom practice. Not only were the two 
teachers colleagues in the same school department, teaching similar upper secondary classes; 
they were taking part in the same development project, working together with other members 
of the project team to plan classroom activities. However, in line with his broader stance of 
“teaching for performance”, one teacher saw computer algebra primarily as a computational 
tool to help students produce accurate results; his main focus was on providing students with 
a new set of routine computer algebra procedures for such purposes. The other teacher, in line 
with his broader stance of “teaching for understanding”, saw computer algebra primarily as a 
pedagogical tool to help students grasp new material; his main focus was on: (a) working with 
parallel symbolic and graphical representations of functions and their derivatives to bring out 
relationships between them; and (b) generating patterned results by applying a common 
operation to sets of symbolic expressions from which general rules could be induced (such as 
between particular types of expression and their derivatives as shown in Figure 2). Moreover, 
this teacher restricted students’ use of computer algebra for normal computational purposes 
because he considered that following pencil-and-paper methods was extremely important for 
developing understanding. Following Wertsch’s (1990) use of the term, Kendal et al. talk of 
the teachers ‘privileging’ different modes of use for computer algebra, aligned with their 
differing conceptions of mathematical learning and correspondingly diverging teaching 
practices. 

 

 
Figure 2: Patterned computation in a computer algebra investigation to induce a general rule  
 

Diverging Modes of Computer Algebra Use: Pragmatic and Epistemic 
Emphases within Teaching Approaches  

Contrasts in the interpretation of computer algebra as an educational tool also emerge from 
comparing the approaches adopted by pioneering projects in different countries (Ruthven, 
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2002; Fey, 2006). In some respects, these parallel some of the differences in dynamic 
geometry use noted in an earlier section. The most salient program in the United States has 
taken a more pragmatic approach in which computer tools are treated as providing a relatively 
straightforward and convenient vehicle for applied modeling and problem-solving (Fey, Heid, 
Good, Sheets, Blume & Zbiek, 1995). In France, by contrast, the main program has taken a 
more strongly epistemic approach which plays on the sometimes ambiguous operation of 
computer tools to expose students to situations which deliberately take them beyond their 
current experience and understanding: for example, students may be confronted with 
unfamiliar types of function liable to produce deceptive results when treated with a computer 
algebra system (Artigue, 2002). This approach is skeptical about the received distinction – 
and the perceived opposition – between learning techniques and forming concepts; and thus 
about too ready an assumption that access to computational technology permits a reduction – 
even an elimination – of the former in favor of the latter (Lagrange, 2001). Thus it 
emphasizes the interplay between the development of students’ mathematical knowledge and 
their capacity to make use of computer algebra (as will be analyzed and illustrated in the next 
section).   
   

The Individual Development of Tool-Mediated Mathematical Thinking: The 
Process of Instrumental Genesis 

The French research community, then, has drawn on an established ‘ergonomic’ theory 
(Rabardel, 2002) to analyze the process through which students (and indeed teachers) develop 
their capacity to make use of a tool for mathematical purposes (Artigue, 2002; Trouche, 
2005). In this process of ‘instrumental genesis’, users develop mental schemes which 
transform the tool from being simply a material ‘artifact’ to become a functional ‘instrument’, 
used in ways which become progressively more mathematically sophisticated. In particular, 
users develop schemes concerned not just with immediate operational manipulation of the 
tool (referred to as ‘usage’ schemes), but with ulterior mathematical action (referred to as 
‘instrumented action’ schemes). It is this latter aspect which links users’ developing mastery 
of the tool with the wider development of their mathematical knowledge.  
 
Table 1: Components of the instrumented action scheme for solving parameterized equations 

with a CAS (Drijvers & Gravemeijer, 2005; p. 174) 
 

(1) Knowing that the Solve command can be used to express one of the variables 
in a parameterized equation in other variables. 

(2) Remembering the CAS syntax of the Solve command, that is Solve (equation, 
unknown). 

(3) Knowing the difference between an expression and an equation. 
(4) Realizing that an equation is solved with respect to an unknown, and being 

able to identify the unknown in the parameterized problem situation. 
(5) Being able to type in the Solve command correctly on the CAS. 
(6) Being able to interpret the result, particularly when it is an expression… 

 
For example, working in the Netherlands, Drijvers & Gravemeijer (2005) have analyzed the 
instrumented action scheme for solving parameterized equations using a computer algebra 
tool, breaking it down into the six components shown in Table 1. They point to the way in 
which ‘technical’ and ‘conceptual’ knowledge is intertwined in such a scheme. Moreover, 
they pinpoint several ways in which of the CAS makes certain concepts explicit which remain 
implicit when the same task is accomplished ‘by hand’. For instance, the concept that an 
equation is solved with respect to a particular variable is made explicit by CAS syntax for the 
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Solve command which requires the user to specify this particular variable, whereas when 
working with pencil and paper this idea remains tacit because of the absence of a distinct step 
requiring the method of solution to be formulated in these terms. Likewise, Drijvers & 
Gravemeijer report that using the same computer algebra command whether calculating the 
numerical solution of an equation or making one variable the subject of an equation involving 
others, fosters awareness of their mathematical equivalence. 
 

Managing the Instrumental Genesis of Computer Algebra Usage: From 
Unregulated Proliferation to Orchestrated Socialization 

This process of instrumental genesis has a social dimension as well as an individual one. The 
French research community has drawn on an established ‘anthropological’ theory 
(Chevallard, 1992) to conceptualize the wider process through which a mathematical domain 
is publicly constituted. This theory emphasizes the part which institutionalized systems of 
recognized tasks and accepted techniques for accomplishing them play in giving meaning to 
mathematical ideas, and the associated technical and theoretical discourses through which 
these are explained and justified. It was used to analyze certain difficulties that emerged 
within a development project to explore the integration of computer algebra into upper 
secondary mathematics (Artigue, 2002). First and foremost was the explosion of different 
techniques that computer algebra made available to teachers and students for even the 
simplest task. Checking an algebraic equivalence, for example, is achievable with a computer 
algebra system by, amongst many other variants: repeatedly expanding/simplifying the 
composite expression formed by one side of the equivalence minus the other, to see whether it 
reduces to zero; or superimposing a graph of the expression from one side of the equivalence 
on the graph of the other side, to see whether they coincide. In the first year of the French 
project, the absence of collectively recognized techniques, and of accepted ways of conveying 
such techniques and sanctioning their use, inhibited the establishment of clear, common lines 
of mathematical development within the class. By contrast, particular pencil-and-paper 
techniques had not only an official status, but a well-developed accompanying mathematical 
discourse for explaining and justifying them. This led the project team to recognize the need 
to develop some equivalent apparatus to support collective development of mathematical 
activity through the medium of computer algebra. Likewise, with a view to ‘orchestrating’ the 
classroom environment to make it more conducive to such socialization, the project team also 
gave attention to establishing formats for classroom activity that would counteract the 
‘privatization’ associated with use of symbolic calculators. For example, Trouche (2004; 
2005) outlines the role of ‘sherpa student’ – taken on by a different person from one lesson to 
the next – who becomes responsible for managing a publicly projected machine; through 
guiding the actions of this student in front of the whole class, or by opening them up for 
comment and discussion, the teacher gains a means of shaping use of the tool and the 
mathematical thinking associated with it. 
 

The Cultural Development of Tool-Mediated Mathematical Thinking: The 
Process of Instrumental Evolution 

There is, moreover, a larger order of instrumental genesis than the process of individual and 
collective development through which a group of (student or teacher) users are inducted into a 
locally shared and mathematically coherent repertoire of tool use. This larger order relates to 
the process of cultural development, at the level of the community as a whole, through which 
such a repertoire (and the tool with which it is associated) evolves. Initially, a new technology 
is likely to be treated as a variant or hybrid of those that are already established and familiar. 
When a new technology is assimilated to established methods in this way, it functions as an 
‘amplifier’ of existing forms of action rather than as a ‘reorganizer’ (Dörfler, 1993; Pea, 
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1985). Only as distinctive affordances of a new technology are identified and exploited 
through development of a corresponding system of instrumentation schemes do qualitatively 
new forms of mathematical action and activity emerge. In the evolution of geometric 
software, for example, the original idea of a tool to draw accurate geometrical figures was 
expanded, first through the idea of creating an optional mode in which such figures could be 
dragged, and then, as the potential of this mode emerged, through it becoming the default one 
(Scher, 2000). And while the dragging operation relatively rapidly became a defining feature 
of such software, its unexpected versatility is only gradually being charted and conceptualized 
(Hölzl, 1996; Arzarello, Olivero, Paola & Robutti, 2002). I will refer to this cultural process 
through which new tool-mediated forms of mathematical thinking emerge within a 
mathematical community, some of which become widely diffused and eventually 
institutionalized, as one of ‘instrumental evolution’. 
 

Degrees of Instrumental Evolution in Dynamic Geometry Usage: From 
Amplifying Existing Techniques to Reorganizing Mathematical Tasks 

Another French project throws further light on the instrumental evolution of dynamic 
geometry (Laborde, 2001). Over a period of several years, teachers devised lesson 
‘scenarios’, and iteratively refined them through classroom trials and discussion with a wider 
team of researchers and developers associated with the software. Laborde identified an 
evolution of particular scenarios as they were redesigned to incorporate increasing degrees of 
mathematical/pedagogical innovation. At the first degree, dynamic geometry simply provided 
a convenient parallel to paper and pencil for producing accurate static diagrams and 
generating measurement data. At the second degree of innovation, dynamic geometry served 
to highlight the invariant properties of a dynamic figure: these could be seen to remain stable 
whilst other characteristics of the figure changed in the course of dragging. Laborde illustrates 
her typology in terms of the evolution which took place over the course of the project in a 
scenario intended to introduce students to some geometrical transformation: in the version at 
he first degree, a dynamic figure consisting of a shape and its image under the given 
transformation was used simply to generate measurements from several static examples; at 
the second degree, dragging the dynamic figure was used to support observation aimed at 
characterizing the transformed image in relation to the original shape. In the final version of 
the scenario a genuine mathematical problem was created for students to solve in the form of 
a dynamic figure based on a ‘mystery’ geometrical transformation, unknown and unfamiliar 
to the students and accessible to them only through the behavior of the dynamic figure. Here, 
then, the invariant properties revealed by dragging the figure became the means through 
which the unknown transformation could be characterized. Laborde reports that types of 
scenario innovative at this higher degree were developed only by experienced teachers who 
were very familiar with the use of technology in mathematics teaching and with research in 
mathematics education. Such scenarios depended on establishing qualitatively new types of 
solution to familiar problems, or novel forms of problem dependent on the software. 
 

The Institutional Adoption of Dynamic Geometry: From Technological 
Aspiration to Instrumental Awareness   

These analyses illustrate the complexity and challenge of integrating new mathematical 
technologies such as dynamic geometry and computer algebra into school mathematics. In 
particular, they show how central lines of mathematical development need to be rethought if a 
coherent and effective integration of these tools is to be achieved. Thus, as professional 
advocacy and official endorsement leads to uptake of these technologies spreading beyond 
pilot projects into ordinary classrooms, the institutional frameworks and teaching resources 
which lay out student curriculum and provide pedagogical guidance to teachers need to be 
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revised accordingly. For example, in the English study of mainstream usage of dynamic 
geometry, the marginal way in which its use had been ‘bolted on’ to an established 
curriculum helped to explain the limited instrumental evolution in evidence: expressed in 
terms of teachers cautious about investing time in having their students use (and learn to use) 
the technology, and usages of dynamic geometry never going beyond the second degree of 
Laborde’s typology. While official guidance elaborating the national curriculum had 
promoted the use of dynamic geometry, its institutionalization of this remained largely at an 
aspirational level. First, dynamic geometry tools were treated in a very different way from 
more established manual tools. For instance, the knowledge and skill required to make use of 
a protractor to measure angles by hand was carefully specified (Figure 3), whereas there was 
no equivalent attention to the distinctive knowledge required to measure angles with dynamic 
software (such as knowing that the measurement tool is applied, not to the line segments 
forming the arms of an angle, but to the points defining these segments; or knowing that, 
when an angle of interest becomes reflex under dragging, the measurement provided by the 
software becomes that of the counterpart minor angle). Thus, while the official guidance 
explicitly recognized and provided for instrumental induction related to manual tools, it 
overlooked that aspect of using dynamic geometry tools. Equally, the guidance showed little 
recognition of how dynamic geometry may open up novel mathematical strategies; its 
suggested usages assumed mathematical approaches already available with manual tools, or 
drew explicit parallels with established visual aids. In France, where there have been more 
substantial programs of officially-sponsored research and development, the official guidance 
provided for teachers does incorporate a more highly evolved usage of dynamic geometry, but 
this has had little influence as yet on the textbook schemes which more directly influence 
classroom practice (Lagrange & Caliskan-Dedeoglu, in press). 

 
Figure 3: Extract from official ‘Framework for Mathematics’ focusing on manual tool  

 
Professional Implications Highlighted by Sociocultural Analysis  

This paper has identified a range of key issues surrounding the emergent use of computer 
algebra and dynamic geometry in secondary-school mathematics. First, it has illustrated the 
interpretative flexibility of these tools by highlighting some important differences which have 
emerged in ways of conceptualizing and employing them that reflect the appropriation of the 
tools to contrasting practices of mathematics teaching. Becoming aware of such differences 
and their wider grounding has professional value in supporting a more nuanced and reflective 
approach to processes of policy formation, curriculum revision, teacher education, and 
technology development. Second, this paper has shown that the cultural process of 
instrumental evolution, in which mathematical frameworks and teaching practices are adapted 
in response to new possibilities created by these tools, is at a relatively early stage. Indeed, 
while the studies discussed here have made a useful contribution by highlighting this issue 
and providing exemplars of more far-reaching reorganization of approaches to teaching 
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particular mathematical ideas, this is an area which would benefit from more systematic 
development on a larger scale: for example, by seeking to re-engineer entire topic modules 
around new learning trajectories made possible by innovative uses of the tools (e.g. Artigue, 
2005). Third, at both classroom and systemic levels, this paper has pointed to crucial 
prerequisites for effective institutional adoption of such tools. If computer algebra and 
dynamic geometry are to move from being marginal amplifiers of established practice to 
become more integral organizers of a renewed practice of school mathematics, this requires 
an explicit recognition of the interplay between the development of instrumental and 
mathematical knowledge, including the establishment of a recognized repertoire of 
instrumented mathematical techniques supported by appropriate discourses of explanation and 
justification.  
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