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Chapter 6: Conceptualising mathematical knowledge in teaching 
 
Kenneth Ruthven 
 
Each of the preceding four chapters in this section of the book has examined the development 
of a particular line of thinking about mathematical knowledge in teaching. My task in this 
chapter is to offer a critical appreciation of these approaches, and to create a more overarching 
framework for synthesising their differing contributions to the analysis of key issues of policy 
and practice.   
 
Subject knowledge differentiated 
 
The first line of thinking can be described as Subject knowledge differentiated (Petrou & 
Goulding, Chapter 2). Its fundamental thrust is that expert teaching requires more than what 
would ordinarily constitute expert knowledge of a subject. Thus, its central concerns are to 
identify types of subject-related knowledge that are distinctive to teaching so as to develop a 
taxonomy of such knowledge. The goal is to provide an overarching heuristic framework that 
can guide the analysis, assessment and development of professional knowledge. This project 
has its roots in Shulman’s pioneering sketch of a taxonomy of knowledge for teaching. 
Chapter 2 discusses subsequent work that has sought to refine Shulman’s model in the light of 
more direct practical experience of assessing and developing mathematical knowledge in 
teaching.  
 
Petrou and Goulding focus first on the way in which the range of subject-related aspects 
identified in the Shulman knowledge taxonomy was extended by the model of professional 
knowledge proposed by Fennema and Franke (1992). Because of the significance of 
knowledge of learner cognitions within the Cognitively Guided Instruction [CGI] approach 
with which Fennema and Franke had been involved, it is not surprising that they singled this 
out as a primary category of professional knowledge within their model. This of course 
reflected the much wider trend (as discussed more fully by Steinbring in Chapter 4) to 
conceive teaching less in terms of direct instruction and more in terms of indirect (radical 
constructivist) facilitation, or (social constructivist) mediation, of students’ construction of 
knowledge. Likewise, sensitised to the crucial interaction between knowledge and beliefs 
through their experience of working with elementary-school teachers to develop the CGI 
instructional approach, Fennema and Franke incorporated teacher beliefs as well as teacher 
knowledge into their model. Finally, perhaps the most important feature of Fennema and 
Franke’s model was their insistence on the need to acknowledge “the interactive and dynamic 
nature of teacher knowledge”, and to examine it “as it occurs in the context of the classroom” 
(p. 162) (as discussed more fully by Hodgen in Chapter 3). Both the other (and later) 
programmes of research that Petrou and Goulding then go on to discuss in depth in Chapter 2 
share this concern to attend to knowledge in classroom (inter)action; however, these 
programmes position themselves differently as regards the continuing centrality of the 
Shulman taxonomy. 
  
From an extensive programme of research and development work conducted at the University 
of Michigan, Ball, Thames and Phelps (2008) have proposed a refinement of the Shulman 
taxonomy in which some of its core categories are further subdivided, and others reassigned. 
This refinement was informed by study of the way in which mathematical knowledge plays 
out in classroom practice, conducted with a view to developing operational measures of 
teacher knowledge. In the Michigan model, Shulman’s pedagogical content knowledge [PCK] 
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is conserved, but subdivided into knowledge of content and students [KCS], typically “an 
amalgam, involving a particular mathematical idea or procedure and familiarity with what 
students often think or do” (p. 401); and knowledge of content and teaching [KCT], typically 
“an amalgam, involving a particular mathematical idea or procedure and familiarity with 
pedagogical principles for teaching that particular content” (p. 402). Moreover, in this model, 
Shulman’s curricular knowledge becomes a further subcategory of pedagogical content 
knowledge in the form of knowledge of content and curriculum [KCC]. Shulman’s content 
knowledge, too, is conserved, as an overarching category of subject matter knowledge [SMK], 
but differentiated into common content knowledge [CCK] used in settings other than teaching 
(and so, of course, by non-teachers), and specialised content knowledge [SCK] which 
uniquely enables “teachers… to do a kind of mathematical work that others do not” (Ball et 
al., 2008, p. 400); for example, when they respond to students’ questions and find a telling 
example to make a specific mathematical point; or when they modify tasks to make them 
either easier or harder by anticipating the effects of changing particular didactical variables 
that affect students’ approaches and responses (which also implies a potential involvement of 
aspects of pedagogical content knowledge). Finally, the more tentative subcategory of horizon 
content knowledge [HCK] is proposed which concerns teacher awareness of how 
mathematical topics are related across the span of mathematics, and of how their development 
unfolds, as when teachers connect a topic being taught to topics from prior or future years, or 
explain how it will contribute to longer-term mathematical goals and purposes (although 
presumably such knowledge develops largely through encounters, as both student and teacher,  
with particular curriculum schemes and materials,  raising the question of its relation to 
knowledge of content and curriculum). 
 
Appraising this refinement of Shulman’s taxonomy, Petrou and Goulding question the 
viability of demarcating specialised content knowledge from pedagogical content knowledge. 
Nevertheless, the taxonomic urge encourages fine distinctions:  
 

[S]izing up the nature of an error, especially an unfamiliar error, typically requires… flexible 
thinking about meaning in ways that are distinctive of specialized content knowledge. In 
contrast, familiarity with common errors and deciding which of several errors students are most 
likely to make are examples of knowledge of content and students. (Ball et al., 2008, p. 401).  

 
Such examples also highlight the plurality of routes through which knowledge-in-use can 
emerge in teaching situations. Likewise, the use of ‘amalgam’ signals that many teaching 
problems cannot be adequately framed in ‘pure’ terms drawn from a single knowledge 
domain, or even by drawing on several domains independently. Put simply, satisfactory 
resolution of teaching problems must take account of, and often trade off between, interacting 
considerations of quite different types, framed in correspondingly different terms. This gives 
rise to solutions that often involve an irreducible fusion of such considerations, not reducible 
to the practice, or even logic, of any single pure knowledge domain. Moreover, for reasons 
both of ecological adaptation and cognitive economy, much professional knowledge comes to 
organise itself around paradigmatic problems and solutions that involve this type of fusion 
since these are closer to experienced teaching situations.  
 
Thus, the contrasting approach taken at the University of Cambridge by Rowland, Huckstep 
and Thwaites (2003, 2005) has been to develop a taxonomy more directly grounded in 
analysis of teacher knowledge-in-use in the course of actual classroom teaching episodes. 
While the Knowledge Quartet acknowledges parallels to the Shulman knowledge taxonomy, 
it does not seek to refine that model. Rather, it is designed to provide a guide to mathematical 
knowledge-in-use that is well suited to supporting teachers’ professional reflection and 
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learning. This Cambridge taxonomy, like the Michigan one, establishes prototypical systems 
of classification rather than logical ones, evoked through paradigmatic examples more than 
formulated through tight definitions. Essentially, the Knowledge Quartet provides a repertoire 
of ideal types that provide a heuristic to guide attention to, and analysis of, mathematical 
knowledge-in-use within teaching. However, whereas the basic codes of the taxonomy are 
clearly grounded in prototypical teaching actions, their grouping to form a more discursive set 
of superordinate categories – Foundation, Transformation, Connection and Contingency – 
appears to risk introducing too great an interpretative flexibility unless these categories 
remain firmly anchored in grounded exemplars of the subordinate codes. 
 
Petrou and Goulding conclude Chapter 2 by proposing a synthesis of the different taxonomies 
of teacher mathematical knowledge that they have reviewed. In my view, while attempting 
this task is a valuable exercise in comparing and clarifying the models, it is not one that can 
be completed satisfactorily. The comparability of categories from the different taxonomies is 
no less problematic than the distinction between categories within any one. Influenced by 
experience of transposing the Knowledge Quartet from an English to a Cypriot context, 
Petrou and Goulding’s synthesis gives more priority to curriculum knowledge than does either 
the Michigan or the Cambridge model. In effect, Petrou and Goulding revert to something 
close to core elements of the original Shulman taxonomy, wherein curriculum knowledge sits 
alongside content (or subject matter) knowledge and pedagogical content knowledge. This 
provides a reasonable match to Ball et al.’s refinement of the Shulman taxonomy, but its fit to 
the Knowledge Quartet is more problematic. 
 
The Shulman knowledge taxonomy and its subsequent variants have mesmerised the field 
rather at the expense of the model of pedagogical reasoning that accompanied early accounts 
of the taxonomy (Wilson, Shulman, & Richert, 1987). In particular, this model incorporates a 
crucial process of transformation which focuses on the interpretation and representation of 
disciplinary concepts, and on their adaptation to some general schooling situation and their 
tailoring to a particular group of students. If we view transformation as a process of problem 
solving, we see that it is subject to a range of constraints, both mathematical and pedagogical, 
which often cannot be considered in isolation from one another. Thus, what might appear to 
be simply a solution to a mathematical problem may have also been conditioned by 
pedagogical constraints and vice versa. Equally, where a teacher’s solution to a problem of 
classroom teaching is also conditioned by curricular constraints, this can disguise a further 
interplay of mathematical and pedagogical considerations behind the institutionalised 
curriculum. Moreover, while solutions to such teaching problems may become crystallised as 
stable knowledge, they may equally be subject to continuing adaptation and refinement, and 
they will vary between teachers and across teaching settings. From this viewpoint, it becomes 
clearer why it has been so difficult to make demonstrable progress in establishing persuasive 
and productive knowledge taxonomies. 
 
Petrou and Goulding’s synthesis also incorporates the setting or context of teaching as an 
explicit, though relatively underdeveloped, element of their model.  On the structural side, 
“the context in which teachers work is the structure that defines the components of knowledge 
central to mathematics teaching”, and “this ‘context’ [includes] the educational system,… the 
curriculum and its associated materials, such as textbooks and the assessment system”. On the 
agentic side, “teachers’ [knowledge] can determine the ways in which [they] understand, 
interpret and use the mathematics curriculum and its associated materials”. Petrou and 
Goulding also draw attention to the “largely individualistic assumption which underpins” the 
models of teacher knowledge that they have discussed and suggest that attention needs to be 
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given to teacher knowledge in relation to the wider systems within which it functions and 
develops. 
 
Subject knowledge contextualised 
 
Analysing teacher (and teaching) knowledge from this wider perspective is the focus of the 
second line of thinking to be reviewed here; what can be described as Subject knowledge 
contextualised (Hodgen, Chapter 3). The fundamental thrust of this approach is that the 
(collective as well as individual) use and development of subject-related knowledge in 
teaching is strongly influenced by material and social context: the central concern of this 
approach is to identify and analyse significant facets of this contextual shaping. The goal is to 
acknowledge the embeddedness of knowledge in professional activity mediated by teaching 
tools and social organisation, so providing a model better adapted to guide the analysis, 
assessment and development of mathematical knowledge in teaching. This project as a whole 
draws on more general socio-cultural models, and Chapter 3 pursues this line of argument by 
using these models to characterise examples from studies of mathematical knowledge in 
teaching. 
 
In Chapter 3, Hodgen seeks to illustrate the embeddedness of mathematical knowledge in 
professional practice, principally through the case of an experienced advisory teacher for 
primary mathematics who is actively involved in leading professional and resource 
development that includes intensive work on particular mathematical topics. Observed in her 
ordinary professional work, the teacher is able to function competently and confidently in 
tasks involving conceptual as well as computational mathematical activity. Observed in a 
more pressured interview situation involving apparently similar tasks, she does not display the 
same competence and confidence. While Hodgen notes that the teacher’s capacity to access 
relevant knowledge may have been disrupted by anxiety triggered by the interview setting, the 
main explanation that he proposes is that the teacher’s normal competence and confidence 
depends on the support ordinarily available to her through working collaboratively, using 
lesson materials, and drawing on curricular guidance. 
 
Indeed, as Hodgen later points out, another important issue, already recognised by Shulman, 
is the form in which professional knowledge is held and the way in which it is organised and 
accessed. Here, cognitive studies of expert mathematics teaching at school level (Leinhardt et 
al., 1991) have found teachers’ knowledge and reasoning about a particular topic to be 
organised in terms of ‘curriculum scripts’ closely tailored to the actual work of teaching; these 
memory structures provide loosely ordered repertoires of action and argumentation, including 
relevant representations and explanations as well as markers for anticipated student 
difficulties. Likewise, Hodgen suggests that restructuring existing knowledge and experience 
may play a more important part in learning to teach and developing as a teacher than 
acquiring wholly new knowledge. As noted earlier by Fennema and Franke, such 
restructuring is often likely to extend to belief as well as knowledge, so that teacher learning 
also involves a degree of reconstruction of identity. 
 
While the approach developed in Chapter 3 offers a plausible broadening of perspective, it 
appears to rest as yet on a relatively slender and fragmentary evidential base. The other cases 
invoked are all treated much more briefly. One of them provides a counterpoint to the main 
case in showing the distribution of professional expertise across personal knowledge, teaching 
tools and social organisation. In it, the capacity of a high-school mathematics teacher to 
implement an innovatory reform-oriented curriculum appears to rest not just on his rich and 
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well-articulated mathematical knowledge, exercised and perhaps further developed through 
teaching a traditional curriculum for many years, but also on the support provided by the 
curriculum materials and the professional development associated with the innovation. The 
other cases represent a particular type of dysfunction where the personal knowledge of 
teachers is not well-adapted to the particular context of school teaching. In the first of these, 
proficiency in academic mathematical practice does not provide prospective secondary 
teachers with ready resources to respond to a naïve question about what, for them, are taken-
for-granted techniques, a type of question often posed to teachers in school mathematical 
practice. In the second of these cases, compacted knowledge of a mathematical topic 
accompanied by automated recognition of mathematical connections appear to impair the 
sensitivity of a middle-school mathematics teacher to his students’ thinking, preventing him 
from connecting with, and making sense of, this thinking. In effect, these cases show not only 
that knowledge of more advanced mathematics does not, of itself, help a teacher to function 
effectively (for the reasons reviewed by Petrou and Goulding in Chapter 2), but that more 
elementary knowledge may have taken on a curtailed and automated character that stands in 
the way of effective functioning in many teaching situations. It seems that shifts in the 
preferred modalities of mathematical thinking associated with more advanced study can 
create ‘expert blind spots’ for teachers (Nathan & Petrosino, 2003; van Dooren, Verschaffel, 
& Onghena, 2002).  
 
The approach to thinking about mathematical knowledge in teaching developed in Chapter 2 
focuses on different facets of individual knowledge and understanding of mathematics which 
enable teachers to deploy the ideas and methods of the subject flexibly across teaching 
situations without reliance on contextual supports. While the approach developed in Chapter 3 
accepts the desirability of teachers having these types of individual knowledge and 
understanding of mathematics, it acknowledges the reality that many school systems are 
obliged to operate with teachers who lack independent personal competence and confidence 
in the subject. Consequently, from a broader perspective which examines teaching in context, 
this approach suggests that teaching tools and social organisation provide potentially 
important mechanisms to help the teaching force function more effectively, and that these are 
also potentially capable of contributing to the development of teachers’ individual knowledge 
and understanding of the mathematics that they are teaching.  
 
Subject knowledge interactivated  
 
The third line of thinking in this section on conceptualising mathematical knowledge in 
teaching can be described as Subject knowledge interactivated (Steinbring, Chapter 4). Unlike 
the other chapters, this one does not specifically examine teacher knowledge and learning, but 
focuses rather on an evolution of thinking about the character of mathematical knowledge and 
how it is mediated through teaching and learning. The fundamental thrust of the evolution that 
Steinbring describes is towards a view in which mathematical knowledge is taken to be only 
indirectly communicable and locally constructible through social interaction. Hence, the 
central concern of this approach is with the epistemic and interactional processes through 
which mathematical knowledge is (re)contextualised and (re)constructed in the classroom.  
 
For Steinbring, this forms part of a more general view that emphasises reciprocal interaction 
between relatively autonomous systems, rather than direct action of one on another; a view 
applicable not just to relations between teacher and student, but also to those between teacher 
educator and classroom teacher, educational researcher and teacher developer. Nevertheless, 
by examining Stoffdidaktik, Steinbring is focusing on a tradition which plays a central part in 
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the subject-related components of teacher education in the German-speaking world (Keitel, 
1992). Thus, I will add to my précis of Steinbring’s argument some observations of my own, 
based on my understanding of the form and function of Stoffdidaktik in teacher education, as 
gleaned from working with colleagues in German-speaking countries and from examining 
mathematics texts used in teacher education there.  
 
Steinbring employs the widely-recognised ‘didactical triangle’, consisting of 
Mathematics/Content, Teacher/Teaching and Student/Learning (and the relations between 
them), as a device to compare three stages in the evolution of this central component of the 
German tradition of Mathematikdidaktik. In order to trace the evolutionary process, he 
describes changes at each stage in terms of the way in which these elements, and the relations 
between them, are conceived. At the first stage, that of classical Stoffdidaktik, attention was 
focused on Mathematics/Content, in particular on mathematically systematic analysis of 
curricular content to find an optimal presentation and sequencing for teaching purposes. 
Fundamental assumptions, then, were that achieving such a presentation is largely a problem 
of mathematical analysis, and that such a presentation then provides an unproblematic basis 
for effective teaching, and so for effective learning. Consequently, the other elements of the 
triangle, Teacher/Teaching and Student/Learning, received little attention at this stage, and the 
relationship between the elements was assumed to be a linear one in which well-analysed 
Content is relayed by the Teacher to the Student.  One can see how, within teacher education, 
this view gave classical Stoffdidaktik a central place: a good teacher must be well-versed in 
the analysis of subject content for teaching purposes. 
 
The second stage was precipitated by new views of the Student as a sense-making agent in the 
classroom, and of Learning as a process of knowledge construction. This was linked, in turn, 
to a new view of Mathematics/Content in which the processes and products of academic 
mathematical practice were less unquestioningly accorded a privileged place. Under these 
circumstances, the focus of attention within Mathematikdidaktik enlarged to include 
Student/Learning as well as Mathematics/Content, and the style in which 
Mathematics/Content was treated shifted (as exemplified by Freudenthal’s influential work on 
didactical phenomenology and progressive mathematisation). These new views rather 
neglected the element of Teacher/Teaching, indeed sometimes treated it with a degree of 
suspicion. Within the institution of teacher education, reformed Stoffdidaktik responded by 
taking a broader perspective on Mathematics/Content and incorporating greater attention to 
Student/Learning, often in the form of the results of psychological studies of student errors 
and misconceptions (e.g., Padberg, 1989; Vollrath, 1994). In the third stage of the evolution 
described by Steinbring, attention has turned to direct analysis of knowledge construction in 
the classroom, particularly to its epistemic and interactional aspects. Although 
Mathematics/Content, Teacher/Teaching and Student/Learning are regarded as relatively 
independent systems, attention now focuses on their operation and particularly their reciprocal 
interaction. The type of analysis that results from this approach is illustrated in the final 
section of Chapter 4. Steinbring argues, of course, that such analyses carry no direct 
implications for teacher education or for teaching. Nevertheless, one can see how exposure to 
such examples might stimulate teacher educators to incorporate this type of fine-grained 
analysis of the construction of mathematical knowledge through classroom interaction into 
their work with prospective and serving teachers. 
 
At one point, Steinbring introduces a comparison with the Anglo-American tradition. He 
suggests that there is a further type of mathematical knowledge relevant to teaching that goes 
beyond content knowledge and pedagogical content knowledge as characterised by Shulman: 
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what he terms epistemological knowledge for mathematics teachers. We can perhaps best 
understand this by first  observing how Steinbring’s use of the epistemological triangle draws 
attention to what otherwise might be taken as unproblematic mathematical entities. This 
approach highlights the way in which such entities are constituted by virtue of relationships 
between Concept, Sign/Symbol and Object/Reference Context, and how these relationships 
provide a key focus for the unfolding construction and negotiation of knowledge in classroom 
interaction. In effect, the epistemological triangle might be seen as a necessary expansion of 
the Mathematics/Content element within the didactical triangle to enable it to preserve its 
heuristic function given this new view which emphasises “the theoretical and dynamic 
character of mathematics”. It is necessary, then, to treat with some caution apparent parallels 
between relations implied by the didactical triangle and the subcategories of pedagogical 
content knowledge in the refined (Michigan) version of the Shulman knowledge taxonomy. 
Superficially at least, Knowledge of Content and Students focuses on the relation (or, in this 
view, the interaction) between Mathematics/Content and Students/Learning; Knowledge of 
Content and Teaching focuses on the relation (or interaction) between Mathematics/Content 
and Teacher/Teaching. Knowledge of Content and Curriculum presumably resides within the 
Mathematics/Content element within the didactical triangle, but parallels are problematic 
given the way that the analysis presented by Steinbring has shown how views of this element 
have changed markedly within Mathematikdidaktik, as previously unacknowledged 
complexities have been recognised.  
 
Subject knowledge mathematised 
 
The final line of thinking developed in this section of the book can be described as Subject 
knowledge mathematised (Watson & Barton, Chapter 5). Its fundamental thrust is that 
teachers must act mathematically in order to enact mathematics with their students, and that 
doing so calls for a kind of knowledge rather different from that which normally receives 
emphasis in discussions of mathematical knowledge in teaching. The central concern of the 
chapter, then, is to characterise those mathematical modes of enquiry which underpin any 
authentic form of mathematical activity, and to show how teachers employ them to foster 
such activity in their classrooms.  
 
While also embracing Krutetskii’s ‘mathematical abilities’, the chapter locates its approach 
principally within a tradition leading from Polya’s ‘mathematical heuristic’ to Cuoco, 
Goldenberg and Mark’s ‘mathematical habits of mind’. The chapter draws on each of these 
sources to exemplify the range of intellectual dispositions and strategies which can be thought 
of as mathematical modes of enquiry. The chapter then uses a simulated exercise in the 
planning of teaching situations from contrasting types of resource to provide more fully-
developed examples of mathematical modes of enquiry in action within the work of teaching. 
Retrospective analysis of the thinking stimulated by this exercise also leads to more 
mathematical modes being identified. In an authentic piece of planning, of course, contextual 
aspects of the teaching situation would also figure, and might indeed shape key aspects of the 
process. Nevertheless, the artificiality of the exercise does help to focus attention on the 
mathematical modes of enquiry and their significance. In effect, what Watson and Barton are 
doing is “organizing the reality with mathematical means” (Freudenthal, 1973, p. 44), 
bringing out how both the enaction of teaching and its planning can be treated as processes of 
mathematising. This underpins their broader critique of predominant perspectives on 
mathematical knowledge in teaching, challenging their apparent focus on frozen mathematical 
content at the expense of fluid mathematical process (so taking further some of the critiques 
of Shulman’s analysis reviewed in Chapter 2). Where teacher knowledge is concerned, the 
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crux for Watson and Barton is that “a teacher for whom these [modes] are ways of being 
mathematical is more likely to be able to act fluently in all classroom mathematical contexts, 
compared with one who has learned a repertoire of pedagogical strategies without personal 
mathematical involvement”. 
 
Freudenthal (1991, p. 30) has described mathematisation as “the process by which reality is 
trimmed to the mathematican’s needs and preferences” and this seems a very apt description 
of the approach set out in Chapter 5. A recurring feature of the argument is an emphasis on 
personal mathematical experience as a source of insight. Reviewing the planning exercise, 
Watson and Barton conclude that “the dominant knowledge brought to bear on the pedagogic 
tasks of planning and teaching was the personal mathematical past experience of the 
protagonists”. But potential limitations of the personal mathematical experience and thinking 
of teachers as a guide to the mathematical experience and thinking of their students are not 
explored. Challenging the value of teachers learning about common mathematical 
misconceptions amongst students, Watson and Barton suggest that “personal experience of 
how misconceptions come to be constructed is a more powerful source of pedagogic 
knowledge”. Arguing that mathematics teachers need to be able to “see behind” students’ 
productions, they propose that this is exactly “what a mathematician might do when 
interpreting a text, or when thinking through a problem”. 
 
This approach comes close to a mode of thought that has been found to be prevalent amongst 
subject-specialist teachers, in which an explicit mathematical narrative provides the 
organising structure for a tacit pedagogical one.  
 

In mathematics teachers, the subject-matter-specific pedagogical content knowledge is to a 
large part tied to mathematical problems. In a way, it is “crystallized” in these problems, as 
research in everyday lesson planning has shown. In their lesson preparation, experienced 
mathematics teachers concentrate widely on the selection and sequence of mathematics 
problems… Nevertheless, pedagogical questions of shaping the lessons are also considered by 
teachers in their lesson planning, as these questions codetermine the decision about tasks. By 
choosing tasks with regard to their difficulty, their value for motivating students, or to illustrate 
difficult facts, and so forth, the logic of the subject matter is linked to teachers’ assumptions 
about the logic of how the lesson will run, and how the students will learn.… Teachers often do 
not even realize the integration they effect by linking subject-matter knowledge to pedagogical 
knowledge. One example of this is their (factually incorrect) assumption that the subject matter 
(mathematics) already determines the sequence, the order, and the emphasis given to teaching 
topics. The pedagogical knowledge that flows in remains, in a way, unobserved. To teachers 
who see themselves more as mathematicians than as pedagogues, their teaching decisions 
appear to be founded “in the subject matter” (Bromme, 1994, p. 76). 

 
Too mathematically purist a stance risks isolating discussion of mathematical knowledge in 
teaching from productive perspectives that are very much in sympathy with the idea of 
mathematical modes of enquiry, but which frame such ideas in different terms. For example, 
one of the cases which Collins, Brown and Newman (1989) use to illustrate their model of 
‘cognitive apprenticeship’ is Schoenfeld’s (1985) approach to teaching mathematical problem 
solving which lies in the same tradition of critical refinement of Polya’s mathematical 
heuristic as does the mathematical modes of enquiry approach. Schoenfeld, however, is not 
uncomfortable with the language and concepts of the cognitive sciences; indeed, he uses that 
apparatus to generate fresh insights into teaching for mathematical problem solving. Others 
characterise his teaching in similar terms: 
 

To students, learning mathematics had meant learning a set of operational methods, what 
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Schoenfeld calls resources. Schoenfeld’s method [involves] teaching students that doing 
mathematics consists not only in applying problem-solving procedures but in reasoning about 
and managing problems using heuristics, control strategies and beliefs. Schoenfeld’s teaching 
employs the elements of modelling, coaching, scaffolding and fading in a variety of activities 
designed to highlight different aspects of the cognitive processes and knowledge structures 
required for expertise (Collins et al., 1989, p. 470). 

 
The language employed by Watson and Barton in the Conclusion to Chapter 5 suggests that 
theirs is not a purist stance. For example, the references to “authentic mathematical 
experiences”, “having modes modelled”, and “having the modes explicitly discussed at a 
meta-level” appear to borrow from the same forms of language as cognitive apprenticeship. 
Equally, Collins et al. (1989, p. 474) acknowledge how mathematical and pedagogical 
considerations (of exactly the type identified by Bromme in the quotation above) interact in 
Schoenfeld’s thinking about his teaching: “Schoenfeld places a unique emphasis on the 
careful sequencing of problems. He has designed problem sequences to achieve four 
pedagogical goals: motivation, exemplification, practice, and integration.”  
 
Reconceptualising subject knowledge in teaching 
 
Originating in response to perceived inadequacies in received views of mathematical 
knowledge in teaching, each of the lines of thinking presented in Chapters 2 to 5 has given 
rise to productive reconceptualisations.  
 
The first pair of approaches focus on how mathematical knowledge can be functionally 
adapted and developed in ways that specifically support the teaching role. Subject knowledge 
differentiated challenges the received idea that the mathematical knowledge required in 
teaching is simply that developed through studying the subject to a level which provides 
adequate facility in (and perspective on) the material to be taught. This approach has 
reconceived the issue productively by identifying types of subject knowledge that are closely 
linked to teacher activity in promoting effective learning, which are not normally developed 
as a student of the subject, and that appear to be distinctive to teaching (or, at least, developed 
much more fully than in other professions). This also introduces a challenge to the received 
idea that teaching simply involves the direct application of mathematical knowledge that is 
universal in its character and organisation. Subject knowledge contextualised further 
reconceives this issue by showing how teachers’ knowledge undergoes a professionally-
specific adaptation, in which organising structures are developed that support coordinated 
attention to the mathematical and pedagogical facets of teaching, and that involve an 
important degree of (sometimes unacknowledged) fusion between mathematical and 
pedagogical concepts. Subject knowledge contextualised has also challenged what appears to 
be an unexamined emphasis in received views of mathematical knowledge in teaching on 
such knowledge as individually and independently held. In the face of widespread difficulties 
in securing and developing a mathematically proficient workforce within teaching, this issue 
has been reconceived productively by drawing attention to the distribution of subject 
knowledge across teaching tools and professional communities, and so to the contribution that 
(when appropriately developed and organised) these resources can make to supporting 
knowledgeable subject teaching and the development of teachers’ subject knowledge. 
 
The second pair of approaches share an emphasis on a teaching role that centres on supporting 
student knowledge construction. Subject knowledge interactivated challenges the received 
idea that mathematical knowledge can be preformulated in a way that enables it to be simply 
relayed by teachers to students (or indeed by teacher educators to prospective teachers). This 
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approach has reconceived the issue productively by showing the types of interactional process 
through which mathematical knowledge undergoes a process of (re)construction by means of 
active negotiation between the participants in classroom mathematical activity, mediated by 
appropriately designed tasks. In particular, this highlights the types of subject-specific 
epistemic and interactional competence that are required in effective teaching of this style. 
Closely related is the challenge which Subject knowledge mathematised offers to the received 
idea that it is sufficient for teachers to know their subject in the sense simply of being familiar 
with the finished mathematical material to be taught and with associated difficulties that 
students may encounter. This approach reconceives the issue productively by highlighting the 
way in which teachers are responsible for leading classroom enactment of mathematical 
activity through which knowledge can be (re)constructed, and by illustrating how, at its best, 
such joint activity provides a means through which students become conversant with the 
mathematical modes of enquiry that underpin such (re)construction (i.e., how they can be led 
to develop syntactic as well as substantive competence (Schwab, 1978)).  
 
In the face of the widespread difficulties noted earlier in securing and developing a 
mathematically proficient workforce within teaching, this latter pair of approaches might be 
seen as setting a somewhat utopian (and overly challenging) standard for mathematical 
knowledge in teaching. The counter to this is that more modest strategies may only be capable 
of effecting marginal improvement within received practices of mathematics teaching which 
are fundamentally flawed. Indeed, from the more radical perspective, the problem of subject 
expertise in teaching is just one component of a much larger issue of the social reproduction 
of mathematical knowledge. In this view, inadequate mathematical knowledge on the part of 
individual teachers is a subsidiary phenomenon that ultimately resides in the inadequacies of 
received practices, not just of mathematics teaching but of mathematical communication more 
broadly, because these lack mechanisms through which the thinking processes and learning 
strategies that underpin the development of mathematical knowledge are made accessible to 
students and significant to their teachers. 
 
Within the practice of academic mathematics, for example, Thurston (1994, p. 8) has argued 
that established protocols for communication fail to provide effective means of revealing 
underlying thinking processes: 

We mathematicians need to put far greater effort into communicating mathematical ideas. To 
accomplish this, we need to pay much more attention to communicating not just our definitions, 
theorems, and proofs, but also our ways of thinking. We need to appreciate the value of 
different ways of thinking about the same mathematical structure. We need to focus far more 
energy on understanding and explaining the basic mental infrastructure of mathematics… This 
entails developing mathematical language that is effective for the radical purpose of conveying 
ideas to people who don't already know them. 

Thurston is arguing that effective mathematical communication involves some degree of 
interactivation and mathematisation of the knowledge at stake. In particular, he criticises 
approaches to teaching mathematics that neglect such interactivation in favour of a reductive 
focus on demathematised knowledge. 

In classrooms… we go through the motions of saying for the record what we think the students 
“ought” to learn, while the students are trying to grapple with the more fundamental issues of 
learning our language and guessing at our mental models. Books compensate by giving samples 
of how to solve every type of homework problem. Professors compensate by giving homework 
and tests that are much easier than the material “covered” in the course, and then grading the 
homework and tests on a scale that requires little understanding. We assume that the problem is 
with the students rather than with communication: that the students either just don't have what it 
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takes, or else just don't care. Outsiders are amazed at this phenomenon, but within the 
mathematical community, we dismiss it with shrugs (p. 6). 

This highlights how (presumably excellent) conventional mathematical knowledge on the part 
of (university) teachers is unable to compensate for what Thurston characterises as ‘often 
dysfunctional’ cultural practice. Translated into the language of cognitive apprenticeship, the 
type of teaching practice sketched above models mathematical activity in restricted terms, 
employs excessive scaffolding without progressive fading, and neglects cognitive and 
metacognitive articulation and reflection. The result is impoverished joint activity, weak 
interaction between teacher and students, and a corresponding polarisation of their classroom 
roles that accentuates the shortfall of (particularly tacit) knowledge to which students are 
given access.  
 
Under such conditions, few students will develop powerful and flexible strategies of 
mathematical thinking and learning. A fundamental problem of mathematical knowledge in 
teaching is that the school and university experience of many prospective and practising 
teachers has been of this limited type, creating reflexes that are difficult to change. The 
models of subject thinking and learning that prospective teachers have developed as students 
are well known to constitute an important base for the forms of teaching practice that they go 
on to develop. Arguably indeed, taking on a teaching role involves a recasting of intrapersonal 
metacognition into interpersonal activity and dialogue. Interestingly too, this argument 
suggests that the degree to which (what have been presumed to be) distinctive elements of 
mathematical knowledge for teaching can be differentiated from other mathematical 
knowledge may actually be mediated by cultural practices of teaching. Specifically, the 
degree of differentiation between what is regarded as teaching-specific, rather than as more 
generic, mathematical expertise may be directly related to the asymmetry of teacher and 
student roles in classroom mathematical activity, and inversely related to the attention 
accorded there to cognitive and metacognitive articulation and reflection. That provides one 
of the reasons why we have been keen in this book, particularly in the next section, to extend 
our consideration of issues of mathematical knowledge in teaching beyond the English-
speaking world in which the predominant conceptualisations reviewed in Chapters 2 and 3 
have been developed. 
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