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Abstract: There have been various proposals to expand the heuristic device of the didactical triangle to form a didactical tetrahedron by adding a fourth vertex to acknowledge the significant role of technology in mediating relations between content, student and teacher. Under such a heuristic the technology vertex can be interpreted at several levels from that of the material resources present in the classroom to that of the fundamental machinery of schooling itself. At the first level, recent research into teacher thinking and teaching practice involving use of digital technologies indicates that, while many teachers see particular tools and resources as supporting the classroom viability of investigative approaches to mathematics, the practical expressions of this idea in lessons vary in the degree of emphasis they give to a didactic of reconstruction of knowledge, as against reproduction. At the final level, examining key structuring features of teaching practice makes clear the scope and scale of the situational adaptation and professional learning required for teachers to successfully incorporate use of digital tools and resources in support of investigative approaches. These issues are illustrated through examining contrasting cases of classroom use of dynamic geometry in professionally well regarded mathematics departments in English secondary schools.
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1
Introduction

The call for this Special Issue asks contributors, from the perspective of their own research, to examine “the fundamental relationships within the didactic triangle” and to explore “what these mean for teaching development now”. In the first half of this paper I address the editors’ more specific question as to whether “technology introduce[s] another ‘vertex’ such that it is necessary to refer to a didactic quadrilateral”. I give particular attention to work that has proposed an expansion of this type. It transpires – not wholly surprisingly – that such work has represented technology as adding a further dimension to didactical relations by expanding the triangle to form a tetrahedron (rather than a quadrilateral). 

In this light, the second half of this paper examines the interaction between two of the substantive topics that the editors suggested be explored in this Special Issue: “How… the introduction of digital technologies to teaching and learning mathematics affect[s] the relationships within the didactic triangle”; and likewise “How… the introduction of inquiry or investigational tasks impact[s] upon the relationships within the didactic triangle”. This focus reflects the frequent association in the discourse of educational reform between the use of digital technologies and the development of investigative approaches. Such linkage has certainly surfaced in my own research into teacher thinking about successful technology integration, and it is on this research that I draw in addressing these related topics.
2
From didactical triangle to tetrahedron: making a technological dimension visible

In this section I will characterise the didactical triangle and use it to examine the educational affordances of digital technologies; then offer a critical appreciation of various local expansions of the didactical triangle that others have introduced through the addition of a fourth “technology” vertex; and so propose a more generic reconceptualisation of the resulting didactical tetrahedron.

2.1
The didactical triangle: a generic organiser for the analysis of didactic systems

The didactical triangle is a heuristic that identifies what are taken to be the fundamental components of any didactic system: teacher, student and content. Naturally, amongst these three components, subject-specific didactics gives particular attention to analysing subject content with the aim of developing an effective presentation and sequencing of such content for the purposes of teaching and learning. At the same time, any analysis of this type is shaped by the overarching “didactic” of the system: the guiding model – tacit or overt – of the school subject and of schooling processes that informs thinking about relations between content, student and teacher. 

In the domain of didactical theory, for example, there are clear contrasts between the didactic posited by classical stoffdidaktik (see Steinbring 2008), the theory of didactical situations (Brousseau 1997), and realistic mathematics education (Freudenthal 1991). Equally, in the domain of systemic practice, the contrasts between Japanese, German and American “cultural scripts” for teaching and learning mathematics (as referred to in the call for this Special Issue) reflect national differences in the institutionalised didactic governing these fundamental components of content, student and teacher.

In the Japanese lessons, there is the mathematics on one hand, and the students on the other. The students engage with the mathematics, and the teacher mediates the relationship between the two. In Germany, there is the mathematics as well, but the teacher owns the mathematics and parcels it out to students as he sees fit, giving facts and explanations at just the right time. In the U.S. lessons, there are the students and there is the teacher. I have trouble finding the mathematics; I just see interactions between students and teachers. (Stigler & Hiebert 1999, pp. 25-26) 

The didactical triangle serves, then, as a generic organiser for the analysis of didactic systems, and any such system can be characterised in terms of the way in which its overarching didactic frames the relations between content, student and teacher and envisages their interaction. The operational core of any didactic lies in the forms of activity and discourse through which curricular content is animated so as to become appropriable by students. A pervasive didactic of a more reproductive type, for example, is based on teacher-led exposition and elicitation of preformulated mathematical content; here, teacher feedback on student contributions serves to reinforce correct responses and eliminate erroneous ones. A typical didactic of a more reconstructive type is based on collective investigation of problem situations designed to support guided reinvention by students of preconceived mathematical content; this process is shaped initially by feedback from material action and peer interaction, but eventually by teacher (re)framing of emergent mathematical thinking to align it with canonical knowledge.

2.2
The affordances of digital technologies: an overview through the didactical triangle

From the earliest stages of educational computer use, both of the didactic poles alluded to above have inspired attempts to create computer-based interactive systems through which students might engage in corresponding forms of activity without the (necessary) presence of a (human) teacher. Computer-based tutoring systems reflect a broadly reproductive didactic: typically, they enhance the implementation of such a didactic to the degree that they better tailor instructional interactions to the individual student; for example, by taking account of a student’s response to a task to provide relevant feedback and to adjust the tasks subsequently presented. Exploratory computer-based learning environments reflect a broadly reconstructive didactic: typically, they enhance the implementation of such a didactic to the degree that they extend the exploratory actions achievable by students and improve the feedback provided on these; for example, by scaffolding the construction and adaptation of mathematical representations, and providing direct feedback on the effects of particular actions. Both types of interactive system are ambitious in scope: they represent and sequence subject content; they structure and regulate student interaction with that content; and they take up (if not necessarily take over) aspects of the teacher role in line with one or other overarching didactic. However, such systems have yet to achieve any widespread presence in schools.

Another line of development in the educational use of digital technologies has sought to update and enhance the basic infrastructure that supports classroom communication between teacher and students, and assists their use of content-related resources within and beyond the classroom. In some educational systems digital technologies of this type are now in widespread use. It is common for schools to make resources accessible, via a school intranet and the Internet, so that these can be accessed and used by teachers and students in the classroom, elsewhere in the school, or at home. Equally, it is common for classrooms to be equipped with an interactive whiteboard or data projector that can be linked to the teacher’s laptop computer, as well as to the intranet and the Internet; this provides for digital resources not just to be publicly displayed but manipulated and annotated in the course of whole-class exchanges. Less commonly, students are provided with individual devices for giving classroom feedback to the teacher and for sharing ideas with the class as a whole. These developments have been readily embraced because they provide relatively simple (if often expensive) enhancements to everyday means of communication and resource use, in and beyond the classroom. These technologies are not strongly framed in didactic terms, and have potential to support activity across the didactic spectrum; nevertheless, in practice they are often appropriated to a reproductive didactic. For example, a national inspection report characterises patterns of classroom use of interactive whiteboards in English schools as follows: 

Good practice included the use of high-quality diagrams and relevant software to support learning through, for example, construction of graphs or visualisation of transformations. Pupils enjoyed quick-fire games on them. However,… too often teachers used them simply for PowerPoint presentations with no interaction by the pupils. A negative effect of interactive whiteboards was a reduction in pupils’ use of practical equipment. (Office for Standards in Education 2008, p. 27)

These shifts in the basic information and communication infrastructure of schooling have evoked parallel shifts in the media employed for curriculum materials. Resources that have traditionally been paper-based, such as textbooks and worksheets, are increasingly available in digital versions. Often these are little changed in content and presentation but amenable to more versatile handling through imaginative use of a device such as an interactive whiteboard. There is growing development of hypertext forms of textbook and worksheet for online use by students and teacher, outside lessons as well as within. Likewise, digital counterparts to conventional visual aids and manipulative apparatus are emerging, often in the form of applets. This growth of digital curricular resources is broadening the ways in which teachers and students engage with mathematical content; in particular, such resources increasingly employ dynamic representation and provide for user interaction. For example, a recent US report on curriculum and instructional design characterises the system of resources associated with the emerging “digital text” as comprising: 
multi-media, interactivity, customization and adaptive systems, storage of information by and about student work, and intelligent agents… [supported by] probes, applets for simulation and visualizing physical phenomena and mathematical ideas, tasks permitting reasoning with multiple representations, links to additional information and video clips related to the context of problems, short video clips of master teachers or scientists introducing or applying ideas. (Center for the Study of Mathematics Curriculum 2010, p. 13)

Finally, digital mathematical tools are finding a tentative place in school mathematics, typically alongside – as complement to rather than replacement for – older tools. While it is increasingly common to find arithmetic calculators (with their associated techniques) used in the primary school, mental calculation techniques and written computation methods (with their associated apparatuses for schematisation and recording) retain their central place in most curricula. In the secondary school, a more pragmatic concern with efficient and effective calculation has allowed scientific calculators to take the place of computation using written methods, mathematical tables and/or slide rules. However, in many educational systems, while some use is made of graphic calculators and graphing software at secondary level, techniques involving the apparatus of graph paper continue to be emphasised in the curriculum. In most educational systems, other digital mathematical tools that are now widely used outside schools – such as spreadsheets – are used only occasionally, and then principally as expedient pedagogical supports, rather than pervasively as accepted mathematical tools. All of this reflects the very limited renewal that has taken place in the mathematical content of schooling in response to the influence of digital technologies on many mathematical practices outside the school. The most striking confirmation of this lies in the minimal degree to which, in most educational systems, official protocols governing the assessment of students’ mathematical capability permit, let alone require, use of digital mathematical tools. The tendency remains to emphasise the use of digital technology as a pedagogical aid, as this extract from an English national inspection report illustrates:

The change in rules that restricted the use of graphical calculators in [upper secondary school] examinations from 2000 had a severely negative impact on their use as a tool for teaching and learning. There has been limited recovery from this, with many teachers reverting to former methods for teaching topics such as graphs and transformations, for instance, thereby missing opportunities to exploit the power of hand-held technology in promoting students’ understanding. (Office for Standards in Education 2008, p. 28)

2.3
The didactical tetrahedron: local expansions in search of generic organisation

The educational use of this range of technologies, then, clearly relates to the concerns of the didactical triangle, and the relations and interactions between its components. Consequently, there have been several proposals to expand the triangle by the addition of a fourth vertex to create a didactical tetrahedron that makes the significance of technology explicit.

In Tall’s (1986) didactical tetrahedron, computer, mathematics, teacher and pupil form the vertices. Tall proposed a didactic in which computer software provides a means of manipulating examples of a concept “designed in a manner that makes the mathematics as explicit as possible[;] show[ing] the processes of the mathematics as well as giving the final results of any calculation”. In this way, he argued, “the mathematics is no longer just in the head of the teacher, or statically recorded in a book[;] it has an external representation on the computer as a dynamic process, under the control of the user”. Tall envisaged such software supporting “an enhanced Socratic mode of teaching… that begins with teacher demonstration of the concepts on the computer and dialogue between teacher and pupils in a context that encourages enquiry and cooperation”.  While Tall entertained “a phase of operations in which the pupils are using the [software] for their own investigations”, he took the view that “the learner usually requires an external organising agent in the shape of guidance from a teacher, textbook, or some other agency to point to the salient generic features and away from misleading factors”. Indeed, the role of such an agent appears crucial if students are to learn how to interact with the software and interpret the representations that it provides to form concepts that are well aligned with the accepted mathematical ones.

More recently, Olive, Makar et al. (2010) have proposed that a didactical tetrahedron  be used to recognise “the transforming effect” of technology, by adding it as a fourth vertex to the didactical triangle formed by student, teacher and mathematics. They are critical of the way in which “many uses of technology take the form of creating electronic worksheets and structured lessons which more or less take the place of current classroom practices”. Instead, they argue that “from the use of digital technologies, a new model of interaction between the student, the mathematical knowledge and the instrument emerges”. In this didactic, digital technologies “can be experimental instruments whereby ideas can be explored and relationships discovered”; which can enable “realistic data [to] be brought into the classroom to make mathematics learning more interesting, challenging and practical”; and which “can introduce a dynamic aspect to investigating mathematics by giving students new ways to visualize concepts”. In this vision, “technology can be used to shift [the] locus of control [in an appropriately designed mathematical task] towards the students, and, thus, empower the students to take more responsibility for their own learning”. While the “role of the teacher becomes critical in managing these rich didactical situations involving technology”, this role can be exercised in ways that differentiate between a reconstructive didactic bound by established knowledge and what might be termed an originative didactic which emphasises the generation of potentially unorthodox ideas by students: “the teacher can attempt to constrain the situation so that students engage with the intended mathematics, or they can be more open and willing to go where the students’ investigations lead them”. Again this raises the issue of how to manage learning when students form, through their interactions with software and interpretation of these interactions, concepts that are – to greater or lesser degrees – aligned with accepted mathematical ones.

For both Tall and Olive et al. the didactical tetrahedron serves to highlight affordances of new digital technologies and to structure their analysis of how their preferred didactic can capitalise on these affordances. But there is no intrinsic reason why the technology vertex of the didactical tetrahedron should not be associated with older non-digital technologies. This is exactly what Rezat (2006) proposes when he makes the textbook the fourth vertex of a tetrahedral extension of the traditional didactical triangle of student, teacher and mathematical knowledge. His guiding perspective is activity theoretic, with each face of the tetrahedron taken as displaying a subsystem of mediated activity, allowing different patterns of textbook usage to be recognised. Moreover, Rezat argues that while the face corresponding to the original didactical triangle “does not even include the textbook, [it] still must be considered as a subsystem of the activity ‘textbook use’” inasmuch as “the teacher implements the knowledge that is represented in the textbook without using the textbook overtly in the lesson.” This does, of course, make a crucial assumption about the relationship between textbook and knowledge; moreover, in school classrooms and educational systems where teachers do indeed “teach to the textbook” one might argue more strongly that the textbook provides not just the content but asserts a much fuller system of didactic relations between teacher, student and content.
Each of these local expansions of the didactical triangle reflects the particular purpose of the analysis in question. Although not fully compatible, they share an approach in which recognition of the part played by technologies – of diverse types – is seen as indispensable. Expansion of the didactical triangle is relevant, then, to understanding the part played not just by new digital technologies but by a further range of already established – and all too easily taken for granted – technologies that likewise mediate relations and interactions between content, student and teacher. 

Moreover, this suggests that individual tools should not be considered in isolation, but rather within a broader framework that examines how alternative forms and different generations of technology mediate thinking, learning and teaching. Taking as an example the near ubiquitous worksheet, we should consider the affordances and constraints of alternative media for worksheets – not just differing digital interfaces but what may be so-familiar-as-to-be-invisible paper-based variants. Likewise, our interest should be in the electronic calculator as only one type of computational technology alongside others such as written methods and mental techniques. This involves comparing the ways in which these mediate computational processes such as monitoring and checking calculations or iteratively improving solutions, as well as the type of support they can provide in developing broader mathematical understanding (Ruthven and Chaplin 1997; Ruthven 1998). 

Nor, as the example of computational techniques illustrates, ought we to conceptualise technology in overly concrete terms. Likewise, we should focus on the worksheet not simply as a material form, but as a pedagogical apparatus. Moreover, the technology vertex of the didactical tetrahedron should prompt us to probe the apparent absence of technology from much of mathematical schooling. We should ask ​– at a first stage – what so-familiar-as-to-be-invisible apparatus we may be overlooking, and – at a further stage – how the absence from the classroom of otherwise ubiquitous technologies conditions didactical relations and interactions. 

This more generic interpretation of the didactical tetrahedron highlights the way in which – even in the absence of new digital technologies – the didactical triangle may offer an overly idealised model of relations between teacher, student and content. At a relatively immediate level, such relations are mediated by the presence or absence of material apparatus and resources ​of the various types already discussed. More fundamentally, however, all of the relations that the didactical triangle identifies are conditioned by a broader machinery of schooling – built around the apparatus of classroom, curriculum and certification – in which interactions between teacher, student, content and resources are embedded. As Olive et al. (2010) observe, where digital technologies have made headway in mainstream education, this has rarely involved more than marginal changes in the governing didactic. They suggest that this “is less a limitation of the technology ‘than a result of limited human imagination and the constraints of old habits and social structures’”. This points to the resilience of what remains a highly evolved and still largely functional mechanism of schooling, built on a massive societal investment in the know-how through which it operates.
3
Digital resources and mathematical investigation: teacher thinking, teaching practices and professional learning

In this light, any analysis that aims to inform “teaching development now” must take account of the current practice and thinking of ordinary classroom teachers, and seek to understand the character of the professional knowledge and learning required for development. Hence, the unfolding focus of this section of the paper will be as follows: first, on understanding how teachers link use of digital technologies with investigative approaches; second, on examining key variations in the ways that teachers conceive and manage relations between technology, content, student and teacher; and, third, on exploring why developing teaching to embrace digital resources and investigative approaches is considerably more demanding than envisaged by many advocates of mathematics education reform. 

Between 1999 and 2005, I led a research team that conducted a number of studies of what mathematics teachers in professionally well-regarded secondary-school departments viewed as constituting successful classroom use of digital technologies. Key reports are Ruthven and Hennessy 2002; Ruthven, Hennessy and Deaney 2008; Ruthven, Deaney and Hennessy 2009. These studies provide insights into teacher perspectives on relationships within the didactical tetrahedron. Due to pressure of space here, I will extract only the essentials that inform the argument under development: detailed information about the research methods used in these studies and about their wider findings can be found in the original reports. While the specific situation examined is that of mathematics teachers in English secondary schools, and particularly their use of dynamic geometry software, the underpinning ideas are much more generic; indeed analysis of these cases makes it plausible that the issues identified here are likely to be of much wider relevance.
3.1
Reproductive and reconstructive didactics within a practitioner model of successful technology use

In the first of these Cambridge studies we drew on focus group interviews to develop a model of mathematics teachers’ ideas about the successful use of computer-based tools and resources (Ruthven and Hennessy 2002). A subsequent Paris study has suggested that this model is also applicable to the thinking of mathematics teachers in French secondary schools (Lagrange and Caliskan-Dedeoglu 2009). 
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Figure 1: A practitioner model of the use of computer-based tools and resources in secondary-school mathematics (Ruthven & Hennessy 2002)

The model (shown in diagrammatic form in Figure 1) identifies ten types of beneficial state of classroom activity that teachers associate with use of digital technologies
. The three states at the right of the model address major goals in conducting a successful lesson: Engagement intensified relates to securing the participation of students in classroom activity; Activity effected relates to maintaining the pace of lessons and the productivity of students; Ideas established relates to achieving progression in student understanding and capability. At the left of the model are four further states most directly afforded by use of computer-based tools and resources: Ambience enhanced relates to varying and enlivening the form and feel of classroom activity; Tinkering assisted relates to aiding correction of errors and experimentation with possibilities; Routine facilitated relates to enabling subordinate tasks to be carried out easily, rapidly and reliably; and Features accentuated relates to providing vivid images and striking effects to highlight properties and relations. Between these two sets lie three intermediate types of state: Motivation improved relates to generating student enjoyment and interest, and to building student confidence; Restraints alleviated relates to making tasks less laborious for students, and to reducing their sensitivity over their mistakes being exposed; and Attention raised relates to creating conditions which help students to focus on overarching issues. 

The linkages shown between states in the diagram correspond to those associations that were prominent in teachers’ accounts. Thus, reading from left to right in the upper part of the diagram, Ambience enhanced assists Motivation improved, while Routine facilitated supports Restraints alleviated; in turn both Restraints alleviated and Motivation improved contribute to Engagement intensified. Reading the lower part of the diagram, Routine facilitated and Features accentuated both contribute to Attention raised; Routine facilitated and Attention raised both contribute in turn to Activity effected; and Features accentuated and Attention raised contribute to Ideas established. Nevertheless, this model should not be read deterministically as implying that exploitation of the technological affordances on the left leads inevitably to achievement of the teaching aspirations on the right. Rather, each construct represents a type of desirable state that teachers seek to bring about in the classroom and which they see the use of technology as capable of contributing to.


In more overarching terms, teachers saw use of digital resources as contributing to the effective functioning of two broad didactic forms, the first – using the terms employed in an earlier section – more reconstructive, the second more reproductive. In the first theme, Investigation promoted, using digital resources was considered to support an investigative approach to reconstructing mathematical ideas: for example, by facilitating exploration of the effects of changing properties and varying parameters. In the second theme, Consolidation supported, using digital resources was considered to support the practice, reinforcement and revision of mathematical knowledge and skills, typically – but not exclusively – through use of courseware designed expressly for this purpose. Teachers appeared to see these didactic forms as complementary: the former concerned with opening up new ideas, the latter with securing them. The use of digital resources for purposes of Tinkering assisted and Features accentuated was associated with both types of didactic. However, Routine facilitated, Restraints alleviated and Attention raised were much more strongly associated with Investigation promoted than with Consolidation supported. Thus, teachers saw the contribution of digital resources as particularly crucial to making investigative activities accessible to students, even viable in the classroom.

3.2
The reproductive-reconstructive spectrum within practitioner use of dynamic geometry software

In a further study the Cambridge team examined the mainstream practice emerging around the use of dynamic geometry (Ruthven, Hennessy and Deaney 2008). Again our initial discussions with teachers generated suggestions that use of dynamic figures supported a broadly reconstructive didactic in which students could “find out how it works without us telling them”, or “tell you the rule instead of you having to tell them”, so that students were “more or less discovering for themselves” and could “feel that they’ve got ownership of what’s going on”, even if teachers might have to “structure”, “hint”, “guide”, or “steer” students towards the intended mathematical conclusion. Our subsequent case studies examined in greater depth what proved to be very different practical expressions of such ideas. Three cases will be used here to illustrate this variation. Summary outlines provide basic information about each lesson observed and report the key themes elicited in discussions with the teacher about the teaching approach and the contribution made by dynamic geometry to it (Boxes 1–3: Read these case outlines to appreciate the basis for the cross-case analysis that follows). 


Box 1: Case N outline: Prepared teacher use of software for interactive presentation

This example, concerning angle properties in the circle, was nominated in these terms:

The one that I do like to do is the one with the circle theorem that says the angle at the centre is twice the angle at the circumference, because that covers the same theorem as the angles in the same segment, and the angle at the semi-circle is 90 degrees, and you can cover a lot of different circle theorems by doing that one demonstration. And the students find it very, very difficult to believe if they don't see it on the computer… And yet when you're dragging it round this circle using Cabri… it just gets that they start to believe a lot more and they are more convinced of its truth.

We observed a lesson that lasted for one 40-minute session, and which involved a Year 10 set of students (aged 14-15) of below-average academic attainment. [We also studied a further single-session lesson with another class, on angle sums of polygons, which displayed very similar features]. The session started with 25 minutes of activity led by the teacher, during which he constructed and manipulated a dynamic figure, projected from his computer onto an ordinary whiteboard. This was followed by individual student activity on a (pencil and paper) textbook exercise.
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Maintaining student attention through dynamic presentation and tactical questioning

Dynamic geometry presentation was valued for holding the attention of students:

I think that holds their attention more. The fact that they can see that you can pick up and drag these shapes around, and then the angles change as well automatically, so all the numbers are changing… That sort of movement, that dynamism, helps to keep their attention.

Tactical questioning of the class was designed to direct students towards a target result:

[I] pick on students that I think may have a problem with it… If students that I think are going to have a problem with it understand it, then I can be fairly confident that the others understand it as well… If [I] ask a student a question and they don’t know the answer,  I won’t give up on them, I’ll carry on asking or trying to get the correct response out of them… Not only is it benefiting the student you’ve asked, everybody else is trying to come to the correct solution as well. And so I do that to help reinforce what’s being presented.

Making properties apprehensible and convincing to students through dragging

Dragging figures was seen as a powerful means of making properties apprehensible and convincing to


students, notably the unchanging measure of the angle at the circumference: 

If you do it on the board and you drag the thing round, then they tend to be much more convinced by what they see. So, I think the technology helps because they can actually see it getting dragged round, they see the angle doesn’t change and they are much more convinced.

Making the relationship between the angle at the circumference and the angle at the centre derivable by students depended on their identifying a pattern as the pairs of measures varied under dragging:
Trying to get across the point that the angle at the centre is twice the angle at the outside… Because the angle automatically changes as you drag the point round, you can write up pairs of values, [and] the students can deduce that themselves… So the technology helps a great deal in that respect because you’re not just telling them a fact, you’re allowing them to sort of deduce it and interact with what’s going on.

Making it easy for students to identify properties by pre-empting possible confusions

Great care was taken to anticipate and pre-empt situations which might confuse students: 

[I] keep things running through the lesson in my own head, and looking for possibilities where students may become confused, or things that might cloud the issue, so that I can do something about that before it becomes an issue in the classroom.

Dynamic figures were designed and manipulated in ways intended to make target properties as readily discernible by students as possible:
I obviously pre-prepared the circle with the lines and angles already marked in. Also for this group, I made sure the angles were always integer values… That way you don’t have half angles to deal with. So the angle at the centre was always an even number of degrees because that way the angle at the outside can be halved quite successfully… So I did that to help make it a little bit easier for them to spot the rule. 

In particular, the teacher avoided dragging figures into positions where any angle would become reflex, resulting in its smaller counterpart angle being measured by the software: 

When you move things around, if the three points you are measuring swap over somehow, then it starts measuring a different angle.

Avoiding the disadvantages of student software use through teacher presentation

Software use was limited to teacher presentation to avoid the demands and difficulties of students themselves using it:

If I wanted the students to do it, it, it would take a long time in order for them to master the package and I think the cost benefit doesn’t pay there… And there’s huge scope for them making mistakes and errors, especially at this level of student.

The educational returns from students learning to use the software were seen as insufficient given a curriculum which was more factual than investigative, and in which relatively few topics benefited from dynamic geometry treatment:

It’s a difficult program for the students to master… The return from the time investment… would be fairly small… And the content of geometry at foundation and intermediate level just doesn’t require that degree of investigation. So they need to learn certain facts… but most of those facts can be learned quite well enough without Cabri.
Box 2: Case P outline: Structured student use of software for group investigation
This example, concerning angle properties in various configurations, was nominated in these terms: 

All of our angle work at [lower secondary] is done [with Cabri]… Most of the tasks are… designed with what we want to achieve from it in mind. So if we want them to see that the angles on a straight line add to 180 it's designed exactly for that purpose… So they should come to the right conclusion but… they feel that they've done it on their own and they've explained it.

We observed two lessons, each lasting for one 50-minute session. We will focus on a lesson on angle sums of polygons, which involved a Year 7 set of students (aged 11-12) of average to above attainment, in their first year of secondary education. The session started with 15 minutes of activity led by the teacher, using an interactive whiteboard. This was followed by the students working in trios at a computer, guided by a teacher-devised worksheet, to investigate the angle sums of dynamic polygons that they themselves constructed. [A second lesson with another class was disrupted by technical difficulties.]
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Developing student awareness of space and shape through exploring dynamic figures

The emphasis of the lesson was more on promoting students’ broad understanding of shape and space than their knowledge of specific results:

The work on angles in polygons is not so important; that is extension work, and we do it again, that topic, later in the year… So it's sort of a lead up for that as well. But in terms of key concepts, it's not really the curriculum topic that's important, but the understanding of space and shape in geometry, and how that works.

While other investigations aimed at establishing specific results were more structured, this lesson was concerned with developing broader spatial awareness, and so was more fluid:

[This] lesson was more about them getting to know the software, them having an awareness of space, and thinking how shapes grow and what happens to some of the corners as they grow, and whether that’s related to the shape. And that was much more fluid… I was a bit more adding on to the end of a topic, and you can be a bit wilder there, and not have to follow the curriculum as such. 

Giving students experience of geometrically principled interaction with the software

An important feature of DGS software was seen as being the way in which its design around geometrical principles shaped student interaction with it:

The package is geometry-based, and it is from-first-principles geometry…  One of the main parts of this lesson was that they could learn the software, and have some idea of how shapes and points relate to each other, and to see that the software works geometrically.

In particular, the teacher could build on students’ experience of making use of the software, to draw out the way in which they had been enacting geometrical principles:

When they were trying to measure the angle, that really brought out the idea of what is an angle… Just the action of doing it really made a fuss about that for them, and they really understood that angles, these three points that are on two lines, and what it means.

Focusing student attention on mathematical essentials through structured software use

It was seen as important to structure students’ use of the software around the dragging of simple figures in order to focus on mathematical essentials:

It does add complications, because it’s quite a difficult piece of software. So that’s why we structure the work so they just have to move points. So they don’t have to be complicated by that, they really can just focus on what’s happening mathematically.

The ease with which figures could simply be dragged to create multiple examples was seen as contributing to achieving this focus:

As they move the shapes around, they can see what’s actually happening, as if they were drawing it on a page, and doing different drawings. But it obviously removes the need for them to have to redraw things. So it’s easier for the kids who find it hard to draw well. So it really helps them, and they can focus on the learning of how the angles match, and what they add up to.

Supporting students in questioning unexpected results and learning from them

Supporting students in identifying and analysing the sometimes confusing way in which the software measured angles was intended to contribute to their learning: 
I wanted to draw attention to… how the software measures the smaller angle, thus reinforcing that there are two angles at a point and they needed to work out the other… Because a lot of them had found that they’d got the wrong answers, and [that] it measured the obtuse angle rather than the reflex angle, so I highlighted that, because that was important in terms of understanding the software. Next lesson, we’ll talk a lot more about what we learned from it.

Anomalous situations of this type were valued for developing students’ critical mathematical thinking about results produced by the software: 
For me, success is when the kids produce something and then say “This can’t be right because it’s not what I expect”… Because they’re going to make mistakes. But if they look at it… they can sense that there’s something wrong… So we talked about how we’d overcome that… I think that happened in slightly different ways around the room, but it was one of the key things that the kids learned, that you can’t assume that what you’ve got in front of you is actually what you want, and you have to look at it… and question it, which is very powerful.

This reflected a wider emphasis on supporting students in thinking through conflicting states of affairs to a coherent resolution: 
Where there is a conflict like that and the child’s not understood something or finds there’s something not right, I question them about what’s not right and why it’s not right, and therefore what do they think it should be?… All the time [I’m] subconsciously thinking, what will challenge this child, what will open the door for them to take this step through. 

Box 3: Case Q outline: Guided student use of software for individual and class investigation
This example, concerning the idea of the ‘centre’ of a triangle, was nominated in these terms: 

We’d done some very rough work on constructions with compasses and bisecting triangles. And then I extended that to Geometer’s Sketchpad on the interactive whiteboard… And we… bisected the sides of a triangle. And [the pupils] noted that [the perpendicular bisectors] all met at a point… And we moved it around and it wasn’t the centre of the triangle. Sometimes it was inside the triangle and sometimes outside… So we had… the whole lesson, just discussing what’s the centre of a triangle.

We observed a lesson over two 45-minute sessions on consecutive days, which involved a Year 7 class of students (aged 11-12) in their first year of secondary education. Both sessions started with 10-20 minutes of teacher-led activity, using an interactive whiteboard. This was followed by student activity at individual computers, guided by a teacher-devised worksheet. In the first session, students themselves constructed a dynamic triangle and the perpendicular bisectors of its edges, in order to investigate the properties of the bisectors. In the second session, they investigated how changing the shape of the triangle affected the position of the point of concurrence.
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Giving students experience of finding rules and patterns within abstract geometry

The lesson followed on from work on construction by hand, extending this beyond the official curriculum:

Geometry’s so vague in school maths at the moment... I mean the traditional national curriculum way would be to do the construction, and then on loci and stuff like that... [But] I went on more of the geometry way.

This involved learning to explore the properties of familiar shapes and conceptualise them in more abstract geometric terms:

The main thing is the idea that you can look at a shape that you’re fairly familiar with and do things to it, and find new ideas.  It’s this idea of coming across abstract geometry and finding rules and patterns within it, which is what geometry’s all about really.

The focus was more on experiencing geometrical exploration than on mastering particular content:

It’s less about learning the actual facts, than about the ideas of exploring an abstract geometrical idea, and finding that there’s lots of different rules…  They will have manipulated shapes, they’ll have got used to… the idea of trying to describe things. There’s a lot of maths there that isn’t directly learning facts, and I think that’s a really important part of doing that sort of exercise.


Emphasising mathematical rules through clarifying student instructions to the computer

The way in which the software required clear instructions to be given in mathematical terms was seen as a key characteristic:

I always introduce Geometer’s Sketchpad by saying “It’s a very specific, you’ve got to tell it. It’s not just drawing, it’s drawing using mathematical rules.”… They’re quite happy with that notion of… the computer only following certain clear instructions.

The teacher helped students to identify mistakes in their constructions and analyse them mathematically: 

[Named student] had a mid-point of one line selected and… a perpendicular line to another, and he didn’t actually notice… When I was going round to individuals; they were saying “Oh, something’s wrong”; so I was [saying] “Which line is perpendicular to that one?”

Such difficulties were viewed as beneficial in drawing out the mathematical ideas at stake:

A few people... drew random lines... because one of the awkward things about it is the selection tool... [But] quite a few discussions I had with them emphasised which line is perpendicular to that edge… So sometimes the mistakes actually helped.

Making mathematical properties noticeable through prompting dragging by students

The teacher noted the crucial part he played in making key mathematical properties remarkable by prompting students to drag the vertices of the dynamic triangle to bring out the concurrence of the perpendicular bisectors:

They didn’t spot that they all met at a point as easily. I think it just doesn’t strike them as being particularly unusual… I don’t think anybody got that without some sort of prompting. It’s not that they didn’t notice it, but they didn’t see it as a significant thing to look for.

Similar prompting of dragging helped students to appreciate how the position of the point of concurrence –inside or outside the triangle– could be related to the size of the largest angle of the triangle –acute or obtuse:

It was nice to see the way that the point, the central point, went from inside to outside. They were able to move that around and look how the angle was changing. And what sort of rules… I led them very closely on that.

Making learning less vague through getting students to write a rule clearly

Formulating findings in explicit mathematical terms was seen as an important issue: 

They’ve got to actually write down what they think they’ve learned. Because at the moment, I suspect they’ve got vague notions of what they’ve learnt but nothing concrete in their heads.

Accordingly, the teacher sought to sharpen the precision with which students expressed their conclusions:

I was focusing on getting them to write a rule clearly. I mean there were a lot writing “They all meet” or even, someone said “They all have a centre”… So we were trying to discuss what ‘all’ meant, and a girl at the back had “The perpendicular bisectors meet”, but I think she’d heard me say that to someone else, and changed it herself; “Meet at a point”. 

This refining of mathematical expression was assisted by the provisionality of the text accompanying figures:

The fact that they had a text-box… and they could change it and edit it, they could actually then think about what they were writing, how they describe. I could have those discussions. With handwritten, if someone writes a whole sentence next to a neat diagram and you say…“Can you add this in?”, you’ve just ruined their work. But with technology you can just change it, highlight it and add on an extra bit, and they don’t mind.  

One case (N in Box 1) involved teacher-led whole-class exposition of preformulated mathematical content through questioning students with the intention of eliciting “correct responses”. Here the teacher judged that his use of the software for dynamic presentation of properties helped both to maintain the attention of students and to enable them to “spot the rule” so that “you’re not just telling them a fact, you’re allowing them to sort of deduce it and interact with what’s going on”. In effect, this appeals to the use of digital technology as supporting some kind of shift from a reproductive didactic towards a more reconstructive one. However, not least in the meticulous preparation and management of the presentation, this approach continues to treat the teacher as the principal agent of knowledge construction and positions technology as a tool for faultless communication. The other two cases (P in Box 2; Q in Box 3) lie closer to the reconstructive end of this didactical spectrum, treating teacher and students more as joint agents in the co-construction of knowledge, and positioning technology as providing a distinctive type of medium for mathematical activity. These two cases featured student-devolved but still teacher-shaped investigation; while still structured towards preconceived mathematical content, such investigation was also intended to develop students’ grasp of spatial imagery and their facility with geometrical language. Here teachers considered that the use of dynamic geometry by students themselves not only provided them with a more effective means of examining figures, but immersed them in interaction with a “from-first-principles geometry” software based on “drawing using mathematical rules”.

It is clear, then, that, across these three cases, differences in the overarching didactic governing relations between the teacher, student and content components of the basal didactic triangle gave rise to different models of the function of the dynamic geometry software within the expanded didactical tetrahedron. First, on the issue of students themselves making use of the software, the classroom approaches could be – variously – described as avoiding (N), minimising (P), or capitalising on (Q) the demands of using dynamic geometry. In Case N, the software was used only for teacher presentation on the grounds that “it would take a long time… for [students] to master the package” and “the return from the time investment… would be fairly small”, so that “the cost benefit doesn’t pay”. In Case P, the normal pattern was “to structure the work so [students] just have to move points [on a prepared figure]”, so that “they don’t have to be complicated by that, they really can just focus on what’s happening mathematically”. In Case Q, getting students to construct and annotate their own dynamic figures was seen as a vehicle for developing and disciplining their geometrical thinking; using dynamic geometry was introduced to students in terms of: “It’s not just drawing, it’s drawing using mathematical rules”; and using text-boxes to annotate figures was treated as a vehicle for refining students’ formulation of their findings using appropriate geometrical language: “they could change it and edit it, they could actually then think about what they were writing, how they describe”. Thus, the differing degree to which students were themselves expected to make use of the software in these three cases was influenced by the extent to which teachers conceived this as promoting mathematically productive activity.


Figure 2: Dynamic geometry figure for establishing the angle sum of a pentagon, illustrating apparent mathematical anomalies

A related issue concerned the handling of apparent mathematical anomalies that arise when dynamic figures are dragged to positions where an angle becomes reflex (with the associated problem of measurement), or where rounded values obscure an arithmetical relationship between measures (both featured in Figure 2). There is considerable potential for such situations to arise in the type of topic that had been most widely reported by teachers as suited to dynamic geometry: the study of angle properties. For example, Cases N and P both included a lesson on the angle sum of polygons (employing a figure of the type shown in Figure 2). In Case N, the teacher took great care to avoid exposing students to apparent anomalies of these types, through vigilant dragging to avoid “possibilities where students may become confused, or things that might cloud the issue”. In Case P, by contrast, the teacher actively wanted students to encounter such difficulties so as to learn “that you can’t assume that what you’ve got in front of you is actually what you want, and you have to look at it… and question it”; equally, resolving such situations was seen as serving “to draw attention to… how the software measures the smaller angle, thus reinforcing that there are two angles at a point and [that students] needed to work out the other”. Likewise, in Case Q, where the greatest demands were made on students in respect of constructing figures, identifying and resolving mistakes that arose in doing so was viewed as beneficial in drawing out the mathematical ideas at stake: “So sometimes the mistakes actually helped”. Thus, approaches to handling these apparent mathematical anomalies were influenced by whether or not teachers saw them as providing opportunities to develop students’ mathematical understanding, in line with a more fundamental pedagogical orientation towards supporting learning through analysing mathematical discrepancies.

This study shows that the forms of guided discovery that dynamic geometry is typically used to support in classroom practice – lying along a reproductive-reconstructive didactic spectrum – are very different from the types of mathematical enquiry envisaged by the original proponents of the software – lying somewhere on a reconstructive-originative didactic spectrum (cf. Olive 2002). Equally, it shows how differing approaches to staging guided discovery, shaped by contrasting conceptions of what it means for students to learn mathematics, lead to very varied interpretations of the functionality for students of dynamic geometry and so to very different approaches to organising software use. 

This study was carried out in mathematics departments that were professionally well regarded for their use of digital technologies. Even in these departments, the exposure of any one class to dynamic geometry was of the order of a handful of lessons each year. More generally, research on how teachers make use of the interactive whiteboards now widely available in English classrooms reports that software such as dynamic geometry is generally rejected as over-complex or used only in limited ways (Miller and Glover 2006). This suggests that it is not just the way in which teachers conceptualise dynamic geometry as a teaching resource that influences their response to it, but more basic concerns about how to realise its incorporation within a viable classroom practice.

3.3
Situational adaptation and professional learning to develop practice in relation to structuring features
Earlier I argued that, whether the didactical triangle or tetrahedron is used, all of the relations that the model identifies are conditioned by a broader machinery of schooling in which interactions between teacher, student, content and resources are embedded. Equally, in using the didactical tetrahedron as a heuristic, I argued for a liberal interpretation of technology which could ultimately be extended to embrace this very machinery of schooling. In effect, this has been the thrust of my most recent work on teacher thinking and teaching practice, focusing in particular on the developing craft knowledge that underpins practitioners’ classroom use of digital technologies and investigative approaches.

The term ‘craft knowledge’ refers to the largely reflex system of situated expertise which teachers develop, tailored to their professional role and embedded in their classroom practice. This perspective focuses, then, on the functional organisation of a broad range of teacher knowledge to accomplish concrete professional tasks. In particular, it recognises that much innovation calls for adaptation of craft knowledge with respect to key structuring features of classroom practice such as working environment, resource system, activity structure, curriculum script, and time economy (Ruthven 2009).

The use of digital resources often involves changes in the working environment of lessons in terms of room location, physical layout, and class organisation, requiring modification of the classroom routines which enable lessons to flow smoothly. Equally, while new technologies broaden the range of tools and resources available to support school mathematics, they present the challenge of building a coherent resource system of compatible elements that function in a complementary manner and which participants are capable of using effectively. Likewise, innovation may call for adaptation of the established repertoire of activity formats that frame the action and interaction of participants during particular types of classroom episode, and combine to create prototypical activity structures or cycles for particular styles of lesson. Moreover, incorporating new tools and resources into lessons requires teachers to develop their curriculum script for a mathematical topic. This ‘script’ is an event-structured organisation of variant expectancies and alternative courses of action, forming a loosely ordered model of goals, resources and actions for teaching the topic; it interweaves mathematical ideas to be developed, appropriate topic-related tasks to be undertaken, suitable activity formats to be used, and potential student difficulties to be anticipated, guiding the teacher in formulating a particular lesson agenda, and in enacting it in a flexible and responsive way. Finally, teachers operate within a time economy in which they seek to improve the ‘rate’ at which the physical time available for classroom activity is converted into a ‘didactic time’ measured in terms of the advance of knowledge.

Changing teaching practice as shaped by these structuring features involves professional learning on the part of teachers. I will illustrate this through a later extension of one of the case studies of the classroom integration of dynamic geometry (Ruthven 2010). Because the teacher concerned was unusually expansive in interview, touching more widely on aspects of practitioner thinking and professional learning, Case Q was particularly suited to further analysis in terms of these five major structuring features ​– working environment, resource system, activity structure, curriculum script, and time economy – and their interaction (as outlined in Box 4: Read this extended case outline to appreciate the basis for the synthesis across structuring features that follows).

Box 4: Case Q extended: Structuring features, situational adaptation and professional learning

Working environment

Each session started in the normal classroom and then moved to a nearby computer suite. This movement between rooms allowed the teacher to follow an activity cycle in which working environment was shifted to match changing activity format. Starting sessions in the classroom avoided disruption to established routines for launching lessons, providing an environment more conducive to maintaining effective commun-ication and student attention during whole-class activity “without the distraction of computers in front of each of them”.
The computer suite had recently been set up for the exclusive use of the mathematics department. The teacher valued the easier and more regular access to technology that it afforded, and the consequent improvement in fluency of students’ use. He was establishing routines with students for opening a workstation, logging on to the school network, using shortcuts to access resources, and maximising the document window. Likewise, he was developing routines for closing computer sessions. Towards the end of each session, the teacher prompted students to plan to save their files and print out their work, reminding them to give their file a name that indicated its contents, and to put their name on their document to make it easy to identify amongst all the output from the single shared printer.


Resource system

The teacher saw use of dynamic geometry as complementing established work on construction with classical manual tools, strengthening attention to the related geometric properties. But he felt that old and new tools lacked congruence, because certain manual techniques appeared to lack computer counterparts. He viewed old and new as involving different methods and having distinct functions: ruler & compass as tools for classical constructions, dynamic software as “a way of exploring the geometry”. 

However, the teacher noted that students could be deflected from the mathematical focus of a task, spending too much time on cosmetic aspects of presentation. During the lesson the teacher had tried out a new technique for managing this, by briefly projecting a prepared example to show students the kind of report that they were expected to produce, and to illustrate appropriate use of colour coding. In effect, by showing students to what degree, and for what purpose, he regarded it as legitimate for them to “slightly adjust the font and change the colours a little bit, to emphasise the maths, not to make it just look pretty”, the teacher was developing sociomathematical norms for using the new technology, and developing a classroom strategy for establishing these norms.


Activity structure

The teacher remarked on how this lesson combined a range of activity formats – “a bit of whole class, a bit of individual work and some exploration” – to create a promising lesson structure; one that he would “like to pursue because it was the first time [he]’d done something that involved quite all those different aspects”. In discussing the observed lesson, however, the teacher highlighted how things had not worked as well as he would have liked in fostering discussion during student activity. Further consideration was needed of the balance between opportunity for individual exploration and for productive discussion, through students working in pairs. 

At the same time, the teacher noted ways in which the computer environment helped to support his own interactions with students within an activity format of individual working. Opportunities arose from helping students to identify and resolve bugs in their dynamic constructions. Equally, the teacher was developing ideas about the pedagogical affordances of text-boxes, realising that they created conditions under which students might be more willing to consider revising their written comments. This helped him to interact with students on expressing themselves more clearly and precisely in geometrical terms by refining their statements of properties. 


Curriculum script

The teacher’s curriculum script was evolving through experience of teaching the lesson, incorporating new knowledge specific to mediating this topic through use of dynamic geometry. 

His script now included knowledge of “unusual” and “awkward” aspects of software operation liable to “cause[] a bit of confusion” amongst students, as well as of how to turn such difficulties to advantage in helping students to develop target mathematical ideas.
Equally, his script incorporated new strategies for helping students appreciate the geometrical significance of the concurrence of perpendicular bisectors, exploiting the affordance of dragging the dynamic figure: “When I talked about meeting at a point, they were able to move it around”. 

A striking example of such development arose from his question to the class about the position of the ‘centre’ when the triangle was dragged to become right angled. Reviewing the lesson, the teacher commented that he “was just expecting them to say it was on the line”. Reacting to the student response he reported that he looked at the figure and “saw it was exactly on that centre point”, and then “moved it and thought… of course it is!”. This illustrates how the teacher’s curriculum script for this topic was being elaborated through reflection-in-action.


Time economy
This teacher measured didactic time in terms of progression towards securing student learning rather than pace in covering a curriculum. At the end of the first session, he linked his management of time to what he considered to be key stages of investigation: “the process of exploring something, then discussing it in a quite focused way as a group, and then writing it up”, in which students moved from being “vaguely aware of different properties” to being able to “actually write down what they think they’ve learned.”
A key aspect of time economy relates to developing students’ capacity to understand and use tools. Because this teacher viewed working with the software as engaging students in disciplined interaction with a geometric system, he was willing to spend time to make them aware of the construction process underlying the dynamic figures used in lessons, by “actually put[ting] it together in front of the students so they can see where it’s coming from.” Equally, he was willing to invest time in having students learn to use the software, building on earlier investment in using classical tools in which “doing the constructions by hand first” was a way of “getting all the key words out of the way.” This illustrates his concern with the complementarity of old and new technologies to form a coherent resource system.

This analysis revealed the degree of adaptation and learning on the part of the teacher. The proximity of his normal classroom to a new computer suite afforded him the option to move between these as the location for lessons, although this had required adaptation of managerial routines to the new working environment. The teacher chose to work in this way on account his assessment of the particular suitability of the two locations for different activity formats. This had permitted him to develop a new type of activity structure covering each session as a whole, efficient in terms of time economy, and providing what he considered a promising structure for an investigative lesson that would capitalise on student use of digital resources. Nevertheless, the teacher was now identifying a tension of pedagogical organisation within the computer suite – between giving individual opportunity to use computers as against supporting group discussion – requiring further consideration and experimentation by him. In terms of the specific digital resource in play – dynamic geometry – the teacher had established a resource system in which this software fulfilled complementary functions to classical tools, each supporting particular aspects of students’ learning of mathematics, and so justifiable in terms of time economy. At the same time, it had been necessary to establish appropriate socio-mathematical norms for classroom use of the software and to find effective ways to inculcate these. The teacher’s curriculum script for the topic was evolving, through adaptation and extension of an investigative task previously carried out with classical tools, involving corresponding refinement of his knowledge about supporting the interactive development of mathematical ideas associated with a dynamic treatment of the topic.
4
Conclusion
Varied proposals have been made to expand the heuristic device of the didactical triangle to form a didactical tetrahedron by adding a fourth vertex to acknowledge the significant role of technology. Such a heuristic can operate at several levels. First, it acknowledges the need to analyse how relations between the original components of the didactical triangle are mediated by specific mathematical or pedagogical tools and resources; not only new digital ones but – potentially overlooked – classical ones. Second it suggests that, in a wider world now rich in technologies mediating processes of information and communication, computation and visualisation, the absence of such tools and resources within the classroom ought to become a focus of analysis. Third, this heuristic can draw attention to the machinery of schooling itself mediating the influence of new mathematical and pedagogical resources and approaches on relations between content, student and teacher.

Embracing the first level of interpretation of the didactical tetrahedron, research indicates that teachers often see digital technologies as supporting the classroom viability of investigative approaches to mathematics. However, contrasting classroom uses of dynamic geometry illustrate how varied the practical expressions can be in the degree of emphasis they give to a didactic based on reconstruction of knowledge, as against reproduction. Teachers’ established ideals and practices shape the way in which they take up digital technologies, resulting in corresponding patterns of interpretation and use of tools and resources. Embracing the final level of interpretation of the didactical tetrahedron, examining the influence of key structuring features on teaching practice makes clear the scope and scale of the situational adaptation and professional learning required for teachers to successfully incorporate use of digital technologies in support of investigative approaches to mathematics teaching.

References

Brousseau, G. (1997). Theory of didactical situations. N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield (Eds./Trans.). Dordrecht: Kluwer.

Center for the Study of Mathematics Curriculum [CSMC] (2010). The future of STEM curriculum and instructional design: A research and development agenda for learning designers. Accessed 5 April 2011 at http://www.mathcurriculumcenter.org/reports_research.php

Freudenthal, H. (1991). Revisiting mathematics education: China lectures. Dordrecht: Kluwer. 

Lagrange, J.B., & Caliskan-Dedeoglu, N. (2009). Usages de la technologie dans des conditions ordinaires : le cas de la géométrie dynamique au collège. Recherches en Didactique des Mathématiques, 29(2), 189-226.

Miller, D., & Glover, D. (2006). Interactive whiteboard evaluation for the Secondary National Strategy: Developing the use of interactive whiteboards in mathematics: Final report. Keele: Keele University.

Office for Standards in Education [OfStEd] (2008). Mathematics: understanding the score. London: OfStEd.

Olive, J. (2002). Implications of using dynamic geometry technology for teaching and learning. In M. Saraiv, J. Matos, & I. Coelho (Eds.) Ensino e Aprendizagem de Geometria. Lisbon: SPCE. Accessed 5 April 2011 at http://www.spce.org.pt/sem/JO.pdf.

Olive, J., Makar, K., Hoyos, V., Kor, L., Kosheleva, O., & Sträßer, R. (2010). Mathematical knowledge and practices resulting from access to digital technologies. In C. Hoyles, & J.B. Lagrange (Eds.), Mathematics education and technology-rethinking the terrain (pp. 133-177). New York, Dordrecht, Heidelberg, London: Springer. 

Rezat, S. (2006). A model of textbook use. Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education [PME 30], vol. 4, pp. 409-416.

Ruthven, K. (1998). The use of mental, written and calculator strategies of numerical computation by upper-primary pupils within a ‘calculator-aware’ number curriculum. British Educational Research Journal, 24(1), 21-42.
Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in classroom practice: The example of school mathematics. Education & Didactique, 3(1), 131-149.
Ruthven, K. (2010). An investigative lesson with dynamic geometry:  A case study of key structuring features of technology integration in classroom practice. Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education [CERME 6], pp. 1369-1378.

Ruthven, K., & Chaplin, D. (1997). The calculator as a cognitive tool: Upper-primary pupils tackling a realistic number problem. International Journal of Computers for Mathematical Learning, 2(2), 93-124.

Ruthven, K., Deaney, R., & Hennessy, S. (2009). Using graphing software to teach about algebraic forms: A study of technology-supported practice in secondary-school mathematics. Educational Studies in Mathematics, 71(3), 279-297.

Ruthven, K., & Hennessy, S. (2002). A practitioner model of the use of computer-based tools and resources to support mathematics teaching and learning. Educational Studies in Mathematics, 49(1), 47-88.

Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of dynamic geometry: a study of the interpretative flexibility of educational software in classroom practice. Computers and Education, 51(1), 297-317. 

Steinbring, H. (2008). Changed views on mathematical knowledge in the course of didactical theory development. ZDM –The International Journal on Mathematics Education, 40(2), 303-316. 

Stigler, J., & Hiebert, J. (1999). The teaching gap. New York: The Free Press.

Tall, D. (1986). Using the computer as an environment for building and testing mathematical concepts: A Tribute to Richard Skemp. Accessed 5 April 2011 at http://www.warwick.ac.uk/staff/David.Tall/themes/computers.html

 








� The linkages shown in the diagram are those where at least 40% of text units referring to one state also referred to the other. The network created by these linkages was interpreted (and so configured) according to the ideas expressed in those text units. Limitations of space prevent more concrete illustration here, but this can be found in the source paper.
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