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Abstract: Recent curriculum initiatives in England have encouraged the introduction of dynamic geometry systems [DGS] into secondary mathematics education, while providing little specific guidance on incorporating their use into classroom practice. 

In this study, we first identified the archetypical status of angle-property topics in the emergent practice of DGS use, on the basis of the examples of successful practice described by highly-regarded mathematics departments. We then explored, in greater depth, the didactical perspectives and practice of three teachers –differing in their broad pedagogical orientation– who had offered such examples, through non-participant observation of five lessons of this type, followed by post-lesson interviews. 

An important consideration for teachers was working efficiently with geometric figures. DGS were seen as helpful in escaping repetition of drawing and measurement required when these processes were carried out by hand. Nevertheless, teachers found themselves addressing difficulties of physical manipulation amongst their students, in many ways analogous to those occurring previously. 

Another concern of teachers was developing viable approaches to classroom tool use. Different approaches reflected broader pedagogical style, reportedly influenced to some degree by the ability of classes and corresponding official expectations. In moderating students’ development of technique, teachers ranged from giving students no direct experience of DGS construction, manipulation and measurement, to expecting students to make use of techniques demonstrated by the teacher. There were similar contrasts of approach to managing apparent anomalies of measurement, ranging from careful management of situations so as to suppress such occurrences, to actively capitalising on apparent anomalies in order to promote mathematisation of tool use, and to instil a critical attitude to computer results. 

The prime purpose of DGS use by teachers was evidencing geometric properties through dragging figures. Most commonly, this involved dragging to examine multiple examples or special cases. More occasionally, it was a matter of dragging to examine dynamic variation. Most striking, however, was a common emphasis on mediating geometric properties through numeric measures, with little direct geometrical analysis of situations in order to explain numeric patterns and theorise geometric properties. This characteristic was common to all lessons, regardless of other pedagogical differences.

These didactical perspectives and practices are discussed in the light of wider thinking about the educational potential of DGS, and the broader practice of mathematics education in English secondary schools. Proposals are made to redesign the types of DGS figures found in current use so as to support visuo-spatial and logico-deductive aspects of mathematical thinking. 

1.
Introduction

This paper reports a multiple-case study of what preliminary research identified as being archetypical current practice in using dynamic geometry systems [DGS] in secondary mathematics education in England. Drawing on lesson observations, and most directly on post-lesson interviews with the teachers leading these lessons, the study sets out to illuminate the didactical thinking informing such use of DGS.

2.
Professional and scholarly background

While some aspects of the educational use of DGS have been relatively widely researched, little attention has yet been given to their use in ordinary mathematics lessons (Gawlick, 2002; Sträßer, 2002). In particular –as more generally within research on ICT in mathematics education– few studies have examined integration of the technology into mainstream classroom practice, or the perspectives and practices of teachers regarding use of the technology (Lagrange et al., 2003). 

2.1
Prior analysis of DGS use in professional practice
Offering a critical overview of the activities for classroom use proposed in the professional literature, Hölzl (2001) suggests that many of these reduce to using DGS in little more than a verifying manner, in which students are expected to vary geometric configurations in order to produce empirical confirmation of facts which have already been formulated. Likewise, Arzarello et al. (2002) argue that, even where DGS are used in a more extended way, task design and teacher moderation play very important parts in encouraging students to press on beyond perceptual impression and empirical verification. 

These issues of task design and teacher moderation have been examined in a recent study of how the types of DGS tasks favoured and devised by secondary mathematics teachers evolved over the course of a three-year professional development project (Laborde, 2001). Laborde characterises the stages of this evolution in terms of the teachers’ appropriation of four different types of task. In the earlier two types, tasks are facilitated, rather than changed, by the mediation of DGS. In the first type, DGS facilitate material actions: for example, producing figures and measuring their elements. An example cited by Laborde is the empirical investigation of the sum of the angles of a quadrilateral, in which DGS serve to generate examples of quadrilaterals and to measure their angles. In the next type, DGS facilitate mathematical analysis: for example, identifying relations within a figure through dragging. In the later two types, tasks are changed in some way by the mediation of DGS. In the earlier of these types, tasks continue to have pencil-and-paper counterparts, but DGS make them amenable to new mathematical strategies: for example, specifying many types of construction becomes more explicit with DGS, and techniques change to some degree. In the final type come tasks which simply could not be posed without the mediation of DGS: for example, reconstructing a dynamic diagram through experimenting with it to identify its properties. 

Laborde concludes that the process by which teachers come to conceive and accept the later types of DGS use is a long and complex one. Moreover, within the project concerned, it seems that an important factor in permitting such an evolution was a significant degree of local autonomy in matters of curriculum and assessment, which made progression from the earlier to later types of task institutionally viable. Another important factor is that the study was conducted in France, one of the countries which comparative studies (Howson, 1995; Hoyles et al., 2001) have identified as taking a more formal and systematic approach to the geometry curriculum, including an emphasis on proof. This constitutes a further institutional condition shaping the reported pattern of teacher development. 

2.2
The context of emergent DGS use in English schools
In earlier work (Ruthven & Hennessy, 2002; Ruthven et al., 2004), we addressed the broader question of how secondary mathematics teachers in England conceive the integration of ICT use into their lessons. The major themes to emerge from our analysis of teachers’ accounts of successful ICT use were that they saw it as contributing to:

· Effecting working processes and improving production, notably by increasing the speed and efficiency of routine processes, and improving their accuracy; 

· Supporting processes of checking, trialling and refinement, notably with respect to checking and correcting exercises, and trialling and improving solutions;

· Focusing on overarching issues and accentuating important features, notably by effecting subordinate tasks, and facilitating the clear organisation and vivid presentation of material;

· Overcoming pupil difficulties and building assurance, notably by alleviating difficulties of writing and graphing by hand, and easing resolution of mistakes;

· Enhancing the variety and appeal of classroom activity, notably by varying the format of lessons and altering their ambience, by introducing elements of play, fun and excitement, and reducing the laboriousness of tasks. 

While we encountered no reports of DGS use in this earlier research, some nascent interest was expressed. This is consistent with contemporary reports (based on government inspections of schools) of the rarity of DGS use (OfStEd, 2002; 2004). Nor is this wholly surprising. Much of the pioneering development of DGS has taken place in countries which have retained a strongly Euclidean spirit within their school geometry curriculum, and the patently Euclidean lineage of DGS might be expected to fit somewhat uneasily with an English national curriculum which refers to the relevant component not as Geometry but as Shape, Space and Measures. We suspect that such impressions have deterred DGS use in English schools. Nevertheless, as the work reviewed above indicates, DGS are capable of supporting various approaches to geometry (Arzarello et al., 2002; Hölzl, 2001; Laborde, 2001). Recently, there has been significant advocacy of greater use of ICT –particularly DGS– in the teaching and learning of geometry in English schools (RS/JMC, 2001) –albeit in very loose terms– as well as official endorsement of the use of DGS in a government-sponsored elaboration of the existing national curriculum at lower-secondary level (DfEE, 2001). Accordingly, our current research has identified dynamic geometry as an emergent form of ICT use in secondary mathematics departments which are highly regarded professionally. 

It is reasonable to expect this emergent use of DGS to be shaped by the longstanding orientation of English school mathematics towards ‘treat[ing] geometry almost entirely as an experimental science, not a deductive one’ (Bell et al., 1983: p. 226). Certainly, in her comparative ethnography of secondary mathematics teaching, Kaiser (2002) comments on the strikingly empiricist spirit of the classroom lessons she observed in England. In particular, she notes the predominance of example-based checking as a means of validating results, not just as employed by students, but also as promulgated by their teachers. She cites, as exemplary of this trend, a lesson in which one of the ‘circle theorems’ (in this case, that angles in the same segment of a circle are equal) was established by the teacher setting each student to draw three diagrams to test this result, and then arguing for acceptance of the theorem on the grounds that their accumulated checks made it highly plausible. This, of course, reflects a well-documented and wider bias within English schools towards mathematical investigation through empirical induction. Indeed, the national report referred to above [RS/JMC] includes an appendix treating ‘circle theorems’ in not dissimilar terms to those described above, but with the important difference that the inductive ‘pattern spotting’ is treated as a (very extensive) preliminary to deductive proof of the result. 

2.3
Situating the study within the wider field  
While this empiricist tendency may be particularly pronounced in England, it has wider currency. A survey of Grade 8 textbooks from eight countries reported that ‘[geometrical] results are based, in the main, on measurement, observation, and experimentation’, supplemented to differing degrees by ‘exercises in “local deduction”’ (Howson, 1995: pp. 70-71). Likewise, a comparison of the English secondary-school syllabus with its counterparts from eight countries (of which five also featured in the earlier textbook study, as did England) reported that several other systems shared the English ‘emphasis on experimental approaches in geometry and on “discovering” rather than “proving” theorems’, although they were judged to provide a clearer development of the subject (Hoyles et al., 2001: p. 3). 

Nor is England unusual in the weak integration of ICT into its official curriculum documents. Hoyles et al. (2001: p. 4) also reported that, in most countries, specification of the role of ICT in secondary school geometry was vague and disconnected. They suggested that the process of ICT integration into the teaching and learning of geometry merited investigation in depth, in carefully chosen and contrasting instances. While the study reported here is confined to English secondary mathematics, it examines the perspectives and practices of teachers working in contrasting local institutional cultures, making it possible to draw out common and variant characteristics.   

3.
Design of the study

This study forms part of a larger research project examining the integration of information and communication technologies [ICT] into the mainstream practice of secondary mathematics and science education in England, with a particular focus on the associated pedagogical thinking of successful practitioners. 

3.1
Identification of archetypical practice for investigation

In the first phase of the project, a process of multiple recommendation and reference  –permitting some triangulation of judgements– was used to identify school departments regarded as successful, in terms both of the general quality of the mathematics or science education that they provide, and of successful integration of the use of ICT –more specifically mathematical tools– into their practice. To identify what practitioners themselves regard as successful practice, we conducted focus group interviews with each of these subject departments (during the latter part of the 2002/03 school year), in which teachers were invited to nominate and describe examples of successful practice. Through this process, a number of practices were selected for more intensive investigation in the second phase of the research. In this second phase, we invited teachers who had been particularly articulate in support of a selected practice to help us to gain greater insight into that practice, through lesson observations and post-lesson interviews (conducted during the earlier part of the 2003/04 school year).

From the focus group interviews that we conducted with mathematics departments, use of DGS was identified as a promising emergent practice. The particular type of DGS use which was most frequently cited as successful involved dragging a geometric figure so as to establish properties of its angles through observing and drawing inferences from their measurements. A common theme of all the accounts offered by teachers was the value of dynamic manipulation in highlighting angle properties. Rather than simply asserting a rule, teachers could now demonstrate it, and identify the conditions under which it held:
We've got all the circle theorems and all the rules for parallel lines already set up, and whereas before you just pretty much used to tell people, 'This is what the rule is', … [now] you can demonstrate it, and you can move the points around, and you can find places where it doesn't work, and you can explain what's going on. [S/DInt]
More active contributions could be solicited from students, as they formulated a rule about the angles concerned, helping their retention of such results:

The thing I like about that is because you're demonstrating it they can tell you what the rule is instead of you having to tell them.… That was the thing I really noticed about the difference between teaching circle theorems with Cabri and without. And so they tend to remember it a lot more because they’ve taught themselves. [S/DInt]
Orchestrated by the teacher, investigation of a situation could be devolved to students much more easily than when figures were constructed and measured by hand:

Using Geometer's Sketchpad for circle theorems… was really useful because it’s so dynamic that it really becomes obvious that the angle in the semi-circle is 90. And I think it’s a lot easier to use that than to draw them out with set squares and things like that… It was them going off… 'Move this; see what happens; measure your angles', that kind of more investigative work which led… at the end [to] 'What have you discovered about the angle in a semicircle?'…  It’s a really nice way of doing it. [L/DInt]

3.2
Choice of schools, teachers and lessons
To investigate this archetypical use of DGS further, we chose three teachers who had been particularly enthusiastic and expansive about it in the departmental interviews. They belonged to two departments with contrasting pedagogical orientations, both in state-maintained comprehensive schools.

At the first school (N), one teacher emphasised the efficiency of using DGS, particularly in establishing several results in the course of a single demonstration: 

I've used Cabri in the past, for circle theorems a lot. And students do enjoy it, and they can see what's going on. One of the nice things is you can pick a point and move it, and so effectively you can create an infinite number of different scenarios, and they can see immediately… The one that I do like to do is the one with the circle theorem that says the angle at the centre is twice the angle at the circumference, because that covers the same theorem as the angles in the same segment and the angle at the semi-circle is ninety degrees, and you can cover a lot of different circle theorems by doing that one demonstration. [N_F/DInt]

His colleague also brought out the potential for students to play a more active part:  

I think it works even better if they can do it for themselves. I mean you have to guide them into what they are doing, but then… they are actually more or less discovering for themselves. [N_L/DInt]

At the other school (P), teachers reported similarly structured investigation, but showed more explicit concern with creating a sense of agency on the part of students:

All of our angle work at [lower secondary level] is done on it… They work… [on] pre-designed… mini-investigations really… It gives them control over it… It's their work and they’ve found out how it works without us telling them. They’ve worked it out. So it's quite rewarding… Most of the tasks are not designed to move freely and openly; they're designed with what we want to achieve from it in mind. So, if we want them to see that the angles on a straight line add to one hundred and eighty, it's designed exactly for that purpose… So they should come to the right conclusion but… they feel that they've done it on their own and they've explained it. [P_W/DInt]

This second school combined a practical, experiential approach with a concern that students should think problems through:
Our work is very practical and very experiential. And so it's just using Cabri to allow them to experience something we can't do physically with ease. I mean you can do it, but it takes time and drawing, and it's not very accurate… The kids will get up and do something that allows them to solve a problem that brings the maths out… [But] the answer itself isn't enough, it needs the explanation as well. So that our children, when they come to that, will have already thought about why does this work, and [will] explain what they see. So it's very pupil-centred having the explanation. [P_W/DInt]

The most recent inspection reports on each of these schools indicated that their mathematics teaching had been judged to be of high quality, and included notable use of ICT. The accompanying commentaries provided triangulation confirming the differences of approach suggested by our departmental interviews. As well as commenting on effective use of ICT at school N, the inspectors praised the attention given to building student confidence and mastery of the set curriculum: 

Teaching is characterised by genuine academic rigour and an impressive focus upon accuracy and attention to detail. Teachers are particularly skilful at ensuring that students understand complex mathematical concepts and employ mathematical techniques with confidence when solving problems. Teachers are also scrupulous in ensuring that topics are fully understood before moving on to more demanding work, which may depend upon prior learning being secure. In some lessons very effective use is made of interactive whiteboards in delivering the taught part of the lesson before students move on to individual work.

Likewise, effective use of ICT was reported at school P (including a specific later reference to the use of DGS), as well a broad view of mathematics and an emphasis on development of thinking and communication skills:

Teachers have high expectations and employ a wide range of teaching strategies including paired and group work, team teaching and the use of practical activities, which make pupils reflect and think about their understanding. The department has a wide view of the nature of mathematics that they wish pupils to share and this is reflected in the teaching. There is significant and effective use of ICT in the mathematics department, both to support the learning of mathematical concepts, to apply these concepts to other situations and to act as a form of communication.

Evidence from these and other sources suggested, then, that further investigation of  the use of DGS in these contrasting but both highly-regarded schools would be particularly informative about emergent professional practice in this area, through examination of the archetypical forms to be explored in this study. Nevertheless, lessons featuring these forms proved to be infrequent (as did lessons featuring use of DGS in general). Within the period available for fieldwork, we were able to organise access to five lessons of this type involving these three teachers (of which one lesson served as pilot for data collection procedures). Nevertheless, as Table 1 indicates, these lessons did offer scope for comparison, not only between lessons taught by the same teacher (on which we also sought the teacher’s views), but between lessons on the same topic. 

Table 1: Lessons observed: School, teacher and class, 

mathematical topic, and organisation of DGS use

	Lesson

School_

Teacher/Occasion
	Class

Year_Set
	Mathematical topic
	Organisation of DGS use

	N_F/1
	9_low

(3/3)
	angle sums of polygons
	teacher uses prepared figure projected onto ordinary whiteboard from laptop computer 



	N_F/2
	10_low

(3/3)
	angle properties     of the circle -

‘circle theorems’
	teacher uses prepared figures projected onto ordinary whiteboard from laptop computer

	N_L/1
	9_high

(1/3)
	angle properties     of the circle - 

‘circle theorems’
	student groups construct required figures on desktop computers, with each step demonstrated by teacher at interactive whiteboard 

	P_W/1
	7_upper

(1/2)
	angle sums of polygons
	student groups construct required figures on laptop computers, following opening demonstration by teacher at interactive whiteboard

	P_W/2
	8_upper

(1/2)
	corresponding angles 
	teacher uses prepared figure on interactive whiteboard, after it proves impossible to load copies onto laptop computers for use by student groups


3.3
Collection and analysis of evidence  
The evidence base for each lesson consists of a detailed observation record (incorporating a transcript of the main episodes, integrated with further observational material including records of the figures displayed), and a transcript of the post-lesson interview conducted with the teacher (requesting thoughts about preparation for the lesson, about the lesson in retrospect, about successful learning within the lesson, about key actions in making ICT use successful, and about potential pitfalls of DGS use). In order to construct a model of the teacher thinking elicited by the interview probes, transcripts were analysed through an iterative process of constant comparison, starting with open coding of a teacher’s ideas about a particular lesson, proceeding to axial coding across lessons and teachers as a whole, resulting in the thematic organisation of ideas. Teachers’ accounts were also triangulated against the observational records of lessons, and the earlier departmental focus groups. Material from these latter sources was used to refine analysis of some themes, particularly where it either illuminated teachers’ accounts or extended them by identifying relevant aspects of teachers’ practice not articulated in the post-lesson interviews.

4.
Themes articulated and enacted by teachers

The opening two themes provide a broad overview of the pedagogical perspectives and approaches shaping the observed lessons, including the general contribution of DGS. The remaining three themes (broken down further into subthemes) focus more directly on what emerged as key issues of DGS use.

4.1
Structuring lessons and mediating student learning
As the departmental interviews and inspection reports had suggested, there were some important differences of pedagogical approach between the two schools. To appreciate the ways  in which teachers integrated use of DGS into their lessons, it is necessary to outline some key features of their teaching approaches.

Both N_F and N_L reported that their aim in lessons was to steer pupils as far through a set agenda as proved possible:

I knew exactly what I wanted them to learn, although I wasn't sure how far we'd get. I was quite happy if it took longer and we didn't get as far, but I knew I wanted to start by seeing that the angle that you make was always the same, and then the angle at the centre was double, and then I wanted to show them the special case. [N_L/TInt_1]

P_W considered that her two observed lessons differed in this respect. The second had a tighter agenda, whereas the first was more experiential in intent, and designed to be more flexible: 

I think this [second] lesson's more structured, and so I taught it differently, with much more control and much more directive about what pupils should do. Because there was a certain agenda, in curriculum terms, that is the aim of this lesson… The other lesson was more about them getting to know the software, them having an awareness of space… And that was much more fluid. [P_W/TInt_2]

The profile of lesson activity was rather different for each teacher. N_F sustained whole-class activity over an extended period, manipulating and annotating projected DGS figures, questioning students, and guiding their written recording of material:    

It tends to be the same kind of approach in terms of presentation, getting students as a whole class to interact with what's going on… [In the first lesson] I kept them going with a bit more writing down and tabulating results… This time it was a bit more high-brow, if you like. They didn't do so much basic writing during presentation, trying to accept the concepts as they went along… I think the approach was pretty similar, the structure of the lesson was pretty similar. [N_F/TInt_2]

His questioning of students was important both in securing their participation in the lesson, and in guiding progression through the lesson agenda: 

Each time we got to an important fact, I wanted to stop to ask some of the students what their thoughts were… [I] pick on students that I think may have a problem with it… If [they] understand it, then I can be fairly confident that the others understand it as well… If [I] ask a student a question and they don't know the answer, I won't give up on them, I'll carry on asking or trying to get the correct response out of them, which… means that the student himself is trying to come to the right answer and… everybody else is trying to come to the correct solution as well. [N_F/TInt_2]

N_L, like his colleague N_F,  sustained whole-class activity over an extended period. However, he differed in interleaving short episodes in which students worked in groups to follow up the DGS operations he had just introduced them to. He sought to manage these episodes of computer work tightly, so as to keep students close to his lesson agenda, and this sometimes entailed holding them back from pursuing ideas further:

Kids were keen often to go a step beyond or anticipate where we were going, and it wasn't always where we were supposed to go, so occasionally I had to tell them not to draw in an extra line, although it might have been quite useful to discovering something else. It wasn't quite what I wanted them to discover. So I think I was quite prescriptive in that way. I knew what I wanted them to do and I had to keep making sure they were on task. [N_L/TInt_1]

He placed a strong emphasis on providing and maintaining this structure:

I'm all for discovery learning, but I think it has to be structured. So I see my role really is to use the technology to give them a structure and then allow them within that fairly narrow structure to discover what it is I want them to discover. So they see it for themselves, but only after I've guided them fairly closely. [N_L/TInt_1]

While this approach generally led students to construe situations as anticipated, he referred to an incident where the projected DGS figure (Figure 3_elaborated) invited an alternative interpretation, and he had to press his point of view: 

As they were doing it, I was asking them constantly, 'What do you notice?'… I was always getting the 'right' answer, if you like, from certain ones. Sometimes they didn't quite get it in the way I expected, like when we had the two angles that added up to the one in the middle, and then I had to try and make them see that… the key thing was that it was half of the angle in the middle. [N_L/TInt_1]

Turning to P_W, she noted important consistencies in her approach. She was always direct about technical matters:

[I was] very, very straightforward about the technical details. I always try and be matter of fact, ‘This is what you must do, here, do this’, and be very clear about all the technical stuff. [P_W/TInt_2]

In contrast, she was less immediately forthcoming about mathematical matters, keen that students should think for themselves:

I'm always the same awkward person who won't answer questions and won't tell them the answers, so that doesn't change. [P_W/TInt_2]

With this in mind, her interactions with students focused on areas of anomaly or uncertainty, where she aimed to support them in thinking through the issue at hand:

Where there is a conflict like that and the child’s not understood something or finds there’s something not right, I question them about what’s not right and why it’s not right, and therefore what do they think it should be?… You’re thinking, all the time subconsciously thinking, what will challenge this child, what will open the door for them to take this step through? [P_W/TInt_1]

Particularly in managing the first, more experiential, lesson, this concern influenced development and pacing. It led eventually to P_W deciding that she would give the class more time to think about a later element of the set task, which most students had not yet addressed as fully as she thought they were capable of doing. She noted how she could use the interactive whiteboard [IWB] to save material in such a situation, making it much easier to return to it in the following lesson:

I don't think they all know the rule, hence the not finishing off, and allowing them to go away overnight, and they might have a think about it… I'll leave the board as it is, save that, and come back to [it]… And some of them will go away tonight and think about it, because they do, they're like that. [P_W/TInt_1]

The pedagogical approaches observed in the lessons themselves were broadly consistent with the teachers’ characterisations of them. In particular, the lessons taught by N_F and N_L were more tightly teacher-directed than those (particularly the first) of P_W. Equally, the lessons taught by N_L and P_W incorporated opportunities for students to work with DGS, unlike those of N_F. Finally, N_F and P_W were rather more responsive to students’ ideas than N_L, although their typical pattern of response took different forms; while N_F used students’ answers and enquiries to push forward his lesson agenda, P_W often used them to promote discussion and reflection.

4.2
Motivating student engagement and agency
These central pedagogical differences between teachers were reflected to some degree in the ways in which they sought to motivate student engagement in classwork, and this extended to their views of the contribution of DGS. 

As already noted, questioning students was a central mechanism which N_F used to maintain the attention of a class:    
And I was, in terms of paying attention, just trying to ask students around the classroom, at random almost, what the answers were, not necessarily the ones with their hands up, just to make sure that they were always keeping on their toes and thinking and not drifting through the lesson. [N_F/TInt_1]

He also employed the dynamic qualities of DGS figures to hold students’ attention:
You can pick up and drag these shapes around… that sort of movement, that dynamism, helps to keep their attention.

He intended his manipulation of DGS figures to help members of the class to formulate the key ideas for themselves:   

Technology helps a great deal… because… you're not just telling them a fact, you're allowing them to sort of deduce it and interact with what's going on. [N_F/TInt_2]

N_F also referred to a further pedagogical mechanism which he sometimes used to involve students more directly, although not in either of the observed lessons: bringing students out to the board to draw by hand onto a projected figure:

I've actually got students to come up to the front of the board and split the shapes into triangles… which I didn't do with that crowd today… It was ticking along nicely without needing to do that… And so I think that there are good occasions when students can do that… coming up and using the whiteboard markers and drawing over the top of the shapes. [N_F/TInt_1]

Like his colleague, N_L intended experience with DGS figures to assist students in formulating key points for themselves: 

I think they were discovering, rather than being told by me and then just using Cabri to check it. They were actually using Cabri to discover, albeit in quite a structured manner. [N_L/TInt_1]

However, in line with the differences already noted, N_L preferred to give student groups the opportunity to interact with a figure on their own machine, noting how they ‘love grabbing it and moving it around’, although he observed that this might not always take them in his desired direction:
It makes it more interesting for them. I think they prefer doing that. I think that [it’s] the interactive nature of being able to move things round, although some of them go off task occasionally and pull it round and do things that they are not supposed to.  [N_L/TInt_1]

Indeed, N_L was keen that students should not see DGS as a plaything, and concerned that their use of DGS should maintain its instructional purpose and provide corresponding rewards:
The danger with Cabri, or with anything like that, is that they can play around, perhaps have quite fun, but they'll get bored after a while, and in the end they won't have learned anything. And I think that's demotivating… But I hope they came across thinking it wasn't a toy, it wasn't a play, but they actually learned something. [N_L/TInt_1]

N_L was also alert to how the normal classroom situation in which several students were assigned to work at a single computer could lead to some being marginalised:

Inevitably you are down to two or three on a computer, and there's a danger of one person taking the mouse and controlling it, and the other ones getting bored. I just try and make sure that they are all involved. [N_L/TInt_1]

P_W related students’ motivation to the terms on which they engaged in classroom tasks, rather than directly to the use of DGS. She emphasised the importance of students experiencing a sense of control over their work, and ownership of it:
It gives them control over it… It's their work and they've found out how it works without us telling them, they've worked it out. So it's quite rewarding. [P_W/DInt]

Accordingly, she noted an important difference between her lessons, following the second lesson in which technical difficulties prevented students working on laptops, obliging her to conduct a session with the class as a whole for most of the lesson: 

I think the laptop's more about ownership for the pupils, because… when you're working on a computer, it's right in front of you, you have ownership of it. If you're going to really see how it moves, you've got to be the one to move it. And when you're working with a full class and the board [it’s] limiting, because only one kid can have the pen. Whereas when they're on the laptop, all the kids can have the pen. You know, they can take it in turns, they can do one each, they can… ‘Now you try, what happens when you do it?’ But to do that on the board is unwieldy, you couldn't do it. Here's thirty kids, every one having a go. You'd be here forever.  [P_W/TInt_2]

In summary, differences in the teachers’ reported approaches to motivating student engagement in classwork were closely linked to the differences noted earlier in their lesson organisation. As far as DGS were specifically concerned, all saw dynamic manipulation of figures as contributing to student engagement, with N_L and P_W according significance to students being able to do this themselves.
4.3
Working efficiently with geometric figures

4.3.1 
Escaping repetition of drawing and measurement

All three teachers were concerned with efficiency in constructing and measuring the geometric figures used in classwork. The benchmark to which they referred was the familiar situation in which these processes were carried out by hand. They noted how much more efficient the use of DGS could be in this respect. In particular, once a DGS figure had been constructed and the desired measurements specified, further examples could be created simply by dragging the figure, whereas to achieve this by hand required repetition of the whole drawing and measurement cycle. 

For N_F this was a matter of the time he spent carrying out such processes at the board:

Essentially, everything that we did there, I could have done by hand on the board, piece by piece by piece. It would have taken a lot more time… It's very quick for me, I don't have to spend a long time drawing these things out. And then measuring the angles. Well, that would take an awful long time, and we would make very little progress compared to what we've done already… It keeps the lesson moving at a good pace. [N_F/TInt_1]

For his colleague, N_L, it was a matter of the much greater time required for students to construct and measure examples by hand:

They could spend hours drawing circles and drawing lines and measuring them with protractors and then realising that one was double the other, so I think that if you tried the discovery method without Cabri you'd spend an awful lot of time on it.  [N_L/TInt_1]

P_W noted that, in the early stages of a lesson, her students took rather longer to create and measure a single figure than they would have taken to do so by hand. However, once this DGS figure had been constructed with the required measurements specified, dragging it to create further examples, rather than repeating the whole process by hand, resulted in much greater gains in time. She also pointed to improved accuracy of measurement as a further benefit:

Although it takes a bit longer, once you've drawn one, you can measure it… The computer's more accurate than they are at measuring, obviously… And they didn't have to redraw multiple shapes, they could just interact with the shapes on the software. Change it and you've got then an unlimited number of shapes that you can repeat… So that, in terms of time, it takes more at the beginning, but then reduces a lot of the time of the problem. I mean I'd still do that [if DGS were not available], make them draw five sides, measure them all, but it would take two or three lessons, whereas we do it in one on the computer. So that's a real benefit. [P_W/TInt_1]

To summarise, teachers were agreed that using DGS increased the efficiency with which geometric figures could be created and measured, so expediting the pace and progress of lessons.

4.3.2
Addressing difficulties of physical manipulation

At the same time, both those teachers whose students used DGS reported that some students experienced difficulties in physically manipulating tools to good effect. 

Only P_W, referred to hand techniques, pointing out how the use of DGS could remove difficulties that some students experienced in drawing and measuring figures by hand, enabling them to focus on the mathematics at issue: 

It obviously removes the need for them to have to redraw things. So it's easier for the kids who find it hard to draw well. So it really helps them, and they can focus on the learning of how the angles match, and what they add up to, rather than 'Did I use my protractor?', 'Could I draw a line?' It removes that problem. So it really makes it easier. [P_W/TInt_1]

More prominently, however, both P_W and N_L drew attention to a very immediate difficulty experienced by students in physically manipulating DGS, analogous to those mentioned above in handling instruments for constructing figures on paper. Selecting points on DGS figures was tricky for many students, often provoking further difficulties:

The other thing that the kids tend to do is, if they're supposed to click on a point, the mouse isn't quite on it, so they'll click and create a new point, and then when they move the point they are supposed to move, the angle doesn't change with it because they've attached it to a different point. So there's all sorts of little things that you constantly have to go round, and when things don't work suggest they clear the screen and start again, or you try and clear if you can see what it is.  [N_L/TInt_1]

P_W reported that such difficulties were more frequent where manipulation was by means of a touchpad rather than a mouse, compromising not just accessibility of the tool but efficiency of work:

Every time you use it, it's hard to pick up points. We don't have a mouse for every laptop, and the ones we did have have all broken, and so we need to get some more, and that adds complications to it. So that's slowed down everything.  [P_W/TInt_1]

Awareness of these difficulties led N_L to prioritise instructing students in techniques for simplifying DGS figures through deleting elements:

I was trying to make clear right at the beginning how they could delete something because, in the past, I know people have gone wrong and then the whole thing gets out of hand because they have unintentional lines and points all over the place. So I was keen that once they'd done something and didn't want to use it anymore, they deleted it and simplified it before we went on to the other things. [N_L/TInt_1]

Although the observed classes were relatively inexperienced in making use of DGS, such a situation appeared to be the norm in schools, because of the occasional use of this technology. In effect, then, both old and new technologies presented difficulties of physical manipulation for some students, with very intermittent use playing some part in this.

4.4
Developing viable approaches to classroom tool use

4.4.1
Moderating students’ development of technique

Differences between teachers in giving students opportunities to use DGS were related to their views on the accessibility of DGS technique and its value to students, particularly regarding students learning how to carry out DGS constructions.

N_F (observed in both lessons with academically less successful classes) doubted that getting students to undertake construction of the required figures would sufficiently repay the time and effort necessary to develop the necessary technique. His comments indicate that this judgement was influenced by the character of the curriculum prescribed for such students, and its assessment:
I don't get the students themselves to do their own constructions in dynamic geometry. I do them all for them… If I wanted the students to do it, it would take a long time in order for them to master the package and I think the cost-benefit doesn't pay there… And there's a huge scope for them making mistakes and errors, especially at this level of student. The brighter kids… would perhaps benefit a bit more from that sort of thing, but certainly the students I was teaching, I think it would take me a long, long time to teach them the program and how to do it, and they would probably only end up with the same level of understanding as they've got at the moment, possibly a little bit more, but it just would be impractical… And the content of geometry at foundation and intermediate level just doesn't require that degree of investigation. So they need to learn certain facts, parallel line work, circle theorems, triangles, polygons, but most of those facts can be learned quite well enough without Cabri, and some of them Cabri helps a lot. But I don't think it would necessarily help if the students were to construct it for themselves.  [N_F/TInt_2]
While N_L was similarly sceptical as to whether working with DGS would directly benefit his students in examination terms, he saw it as having the potential to increase their enjoyment and understanding:

I hope it [working with DGS] gives them an understanding which you don't necessarily need to do the GCSE [examination] questions [for which] you just learn the fact and then you do it. And in some ways you might say had they sat down and done twenty questions given the facts, they would be better equipped now to go into an exam than they are having played around with Cabri. But I think having played round with Cabri, I hope they've enjoyed it, and I hope now when they sit down and do it they'll understand it better. [N_L/TInt_1]

Hence, (observed with an academically successful class), he regarded preparing students to undertake an element of construction as a worthwhile investment:

I wanted them to get the idea of using it, because I want to be using it with them off and on over the next three years… I thought they made quite good progress on that and we didn’t waste a lesson, as it were, learning. We actually learned some maths as well as how to use it. [N_L/TInt_1] 

His normal practice was for students to construct figures (following his step by step instructions) rather than using a prepared file (which he reported he would find difficulty in distributing to students’ computers):

I don't tend to use [prepared figures] because I think it's better for them to construct whatever it is themselves…. It's really quite quick normally on Cabri to do whatever you want them to do… I find it easier just to tell them to do it themselves. [N_L/TInt_1]

P_W (observed with classes more academically successful than those of N_F, but younger than that of N_L) took an intermediate position, reporting that her use of DGS was carefully structured to minimise complexities, typically calling for students only to drag prepared figures, but occasionally involving them in simple construction:
But, it does add complications, because it's quite a difficult piece of software. So that's why we structure the work so they just have to move points. So they don't have to be complicated by that, they really can just focus on what's happening mathematically… What we've done is to try and take away the need to use the complexity of the software, and make most of the lower school interaction with it simple, so that it's just about picking a point up and moving it, moving a line. There's very little actual construction that pupils do themselves. And although we do do some, like we did today… it's very simple construction. [P_W_1/TInt]

Thus, although N_F and P_W shared concerns about the accessibility of DGS technique to their students, they made rather different decisions about its use. While several other factors may have contributed to this (such as N_F’s lack of easy access to computer facilities for his students), a crucial factor appears to have been their conception of DGS as a tool. N_F offered a rather pragmatic view:

Cabri Geometry, it's just a drawing programme where you can draw a number of shapes and you can automatically do things like parallel lines, tangents, perpendicular bisectors and so on. [N_F/DInt]

By contrast, P_W appealed to the mathematically disciplined character of DGS construction:
It’s from-first-principles geometry, so it's not like lots of other things…  where it just jumps and moves things for you… You've got to pick it up and move it, and everything changes in relation to it. If you draw it wrong, it doesn't work, and you have to think about how to construct things. [P_W/TInt_1]

Consequently, she considered that some degree of direct experience would help students to appreciate this discipline, and learn from it. Developing her students’ understanding of mathematical relations through carrying out construction was an important aim of P_W’s first lesson:

One of the main parts of this lesson was that they could learn the software, and have some idea of how shapes and points relate to each other, and to see that the software works geometrically, so it puts the points down, and then the line joins the points, and if you move the point, the line joins, which we covered in the starter. But as they then got to draw their own shapes, that would then reinforce that. [P_W/TInt_1]

Reviewing the lesson, she pointed also to further learning of this type which she had not specifically envisaged, as her students were going through the process of specifying an angle to be measured:
They were [going], 'Oh look, I've got another point, and I don't want that point, I want this point, this point and this point.' And so when they were trying to measure the angle, that really brought out the idea of what is an angle… Just the action of doing it really made a fuss about that for them, and they really understood that angles, these three points that are on two lines, and what it means. [P_W_/TInt_1]

In summary, teachers differed considerably in the degree to which they involved students in carrying out DGS construction, manipulation and measurement. Decisions about involving students in these technical aspects of DGS use were shaped by teachers’ assessment of the immediate demands and eventual benefits of such investment. These assessments, in turn, were influenced by whether teachers saw educative potential in the mathematically disciplined character of DGS use. 

4.4.2
Managing apparent anomalies of measurement 

All three teachers commented on how they managed particular types of apparently anomalous result, occurring when the operation of DGS measurement diverged from expectation. 

One of these types of result arose in measuring reflex angles:
Sometimes it doesn't do quite what you expect. For example, if you mark an angle… it will always mark the one less than 180 and that’s not always what you want it to do. And when you move things round sometimes the angle that it’s displaying isn't quite what you expected. [N_L/TInt_1]

In the lesson concerned, N_L considered only situations where the angle at the centre of the circle was obtuse, finally dragging it to a value of 180 degrees, so that its arms formed a diameter, in order to establish his final target result about the angle in a semi-circle. The issue of what might happen when this angle was dragged beyond that position to become reflex was not considered, although he commented:

Sometimes they move round too far and then they make it more complicated because now they've gone beyond where you wanted them to go [N_L/TInt_1]
Likewise, in his lesson on this same circle topic N_F avoided reflex angles;

When you move things around, if the three points you are measuring swap over somehow, then it starts measuring a different angle, and because I'm aware of that and I just use it for presentational purposes, it's okay. [N_F/TInt_2]
In his earlier lesson N_F did inadvertently drag a polygon so that it contained a reflex angle, quickly dragging it back to obtuse once he realised what had happened:

Does it depend on what type of pentagon?… That’s just a random one. Let’s pull this one around a little bit and see… Let’s do something like that. Now that’s an odd-looking pentagon, isn’t it. So let’s (pause) Oh actually no. The way that my angles are calculated that’s not going to work unfortunately. We’ll have to be careful with the way that I use this program, I’ve just realised that. [N_F/Obs_1]
By contrast, in her lesson on this same polygon topic, P_W made no move to prevent students encountering the added complication of reflex angles, and indeed used this as a springboard for more extended mathematical discussion, both during seatwork by students, and in her closing discussion with the class as a whole:

At the end, I wanted to draw attention to the fact that they were doing different types of shapes and how the software measures the smaller angle, thus reinforcing that there are two angles at a point and they needed to work out the other… But also because a lot of them had found that they'd got the wrong answers, and they've got this, it measured the obtuse angle rather than the reflex angle… I highlighted that, because that was important in terms of understanding the software. [P_W/TInt_1]

In effect, then, P_W treated this as a situation open to mathematisation. Reviewing the lesson she picked out this episode as an example of successful learning, pointing how it contributed to making students adopt a questioning stance towards computer-generated results:

For me, success is when the kids produce something and then say, 'This can't be right because it's not what I expect.'… The group over in this corner, they knew it was wrong, and they weren't sure why it was wrong, but they knew it was wrong. So to me, that's the most successful thing. Because they're going to make mistakes. But if they look at it, 'This isn't right,' they can sense that there's something wrong… So that happened in slightly different ways around the room, but it was one of the key things that the kids learned. That you can't assume that what you've got in front of you is actually what you want. And you have to look at it… and question it. [P_W/TInt_1]

Another type of anomalous result could arise as a result of rounding numeric values. For example, in both the lessons on polygons, episodes occurred where the sum of angles diverged from the expected value. P_W again used the anomaly to promote more extended discussion and mathematisation. N_F dealt with it briskly:

What’s happened in this particular instance is that the computer has calculated the angles and has done some rounding off. It’s only working to one decimal place and, because of the rounding, it’s actually come to the conclusion that it’s 539.9. You’ll have to take my word for it, it should be, if it was measured very accurately, 540 degrees. [N_F/Obs_1]
Afterwards, N_F recalled this episode, explaining that he was concerned to keep to his lesson agenda:

There's only one instance where the computer rounded off slightly inaccurately to make it, was it 539.9 degrees rather than 540 for a pentagon. Which could lead us on to a discussion about accuracy. It would be a bit of a sidetrack, but it's something that I'll come back to later. [N_F_1/TInt]

Nevertheless, in the lesson itself, N_F did extend this episode to introduce a reason for his authoritative statement, one which also advanced his agenda at that point:

T: Why is it 540 degrees?  

P: It’s got three triangles. 

T: It’s because it’s got three triangles in it, right. [N_F/Obs_1]
A final example of this type occurred in the two circle-theorem lessons, where both N_F and N_L arranged that angles should be measured as whole numbers. As N_L explained, this was to make the relationship between the measures of the central and circumferential angles more immediately apprehensible:

Well one thing that I'd intended to do at the beginning and then forgot to do was to get the angles measured to the nearest whole number because I think once it's to one decimal place, the fact that one is half of another is harder to spot than if it's a whole one. So I sort of picked up on that. [N_L/TInt_1]

As N_F explained (and N_L was likewise observed to do) he also had to ensure that he dragged the figure only to positions where the central angle was measured as an even number of degrees, to avoid presenting students with a situation where the rounded measures apparently did not fit the pattern:

Also for this group, I made sure the angles were always integer values, you can do that by changing the number thing on Cabri. That way you don't have half angles to deal with. So if you noticed, the angle at the centre was always an even number of degrees because that way the angle at the outside can be halved quite successfully. Which helps, because it's not necessarily their arithmetic that I was looking at in this lesson, it's their understanding of the concept. So I didn't want them struggling with the numbers. So I did that to help make it a little bit easier for them to spot the rule. [N_F/TInt_2]

In summary, teachers differed considerably in the degree to which they exposed students to apparent anomalies in DGS measurement. Such decisions were influenced by whether teachers saw educative potential in treating these as opportunities for mathematisation, and for instilling a critical attitude to computer results.

4.5
Evidencing geometric properties through dragging figures

As we have seen, all three teachers identified the manipulation of figures through dragging as the central contribution of DGS use to their practice. To understand this aspect of practice more fully, it has proved particularly useful to amplify the teachers’ accounts by directly examining their use of dragging in action.

4.5.1
Dragging within the polygon-angle-sums lessons

The logical development of both lessons on polygon angle-sums followed an inductive sequence. N_F’s lesson started with the familiar case of the triangle, which he used to introduce the dragging approach, then proceeded to quadrilateral and pentagon, with a view to establishing a table of angle sums, and formulating a pattern:

First of all, we start with… the angles in a triangle. It's very familiar territory to them. They all know the angles in a triangle add up to 180 degrees, they don't know why, but they know that it's true. And so they're happy with that subject content. So I, what I was doing in that first bit was getting them used to the idea that you could drag this shape around on the board… And then we could move on, so the second stage really was then developing that with the quadrilaterals and the pentagons… And then the lesson then moved on from there, and really that's where we left the technology behind to then just do a table of results… [and] to move now from concrete thinking to sort of more abstract thinking [about pattern]. [N_F/TInt_1]

Likewise, in her lesson on this topic, P_W first reviewed the triangle case with the class, and then used the quadrilateral case to introduce drawing, measuring and dragging technique to the class. The task which students were set to tackle more independently was as follows:

Using Cabri work through the following investigation. Draw a five-sided shape, mark each angle, calculate each angle… Repeat for another five-sided shape by moving the points around. Draw a table of results in your book and then make some conclusions about the angles of a five-sided shape. Then repeat for six and seven, and try and generalise it and find a rule for the angles in the shapes for any number of sides.  [P_W/Obs_1]

In both the lessons, dragging was treated as a means of generating different examples of each type of polygon. Identical types of DGS figure were used (see Figure 1), on which measures of all angles were marked, and on which any point was to be dragged. P_W talked in terms of students continuing to select different examples until the invariance of the angle sum became persuasive: 

As they move the shapes around, they can see what's actually happening, as if they were drawing it on a page, and doing different drawings… Change it and you've got then an unlimited number of shapes that you can repeat. If they hadn't got the idea the first one, they can try another, and keep reinforcing it until they realise they're all the same. [P_W/TInt_1]
In addition, N_F suggested that the possibility of halting the dragging in any position was significant, conveying a sense of selection from amongst many possible figures (although, as we have seen in the preceding section, he introduced an element of artifice into his dragging, to avoid polygons with reflex angles): 

The fact they can see it changing as you're dragging and dropping it, makes the difference. It's a bit more convincing for them. And then also at one stage I got one of them to actually tell me where to stop… so it wasn't always me that was choosing it. [N_F_1/TInt]

Indeed, in the lesson itself, N_F explicitly introduced the idea of choosing at random:
We’ll come onto the why later, but for the time being I want you to know there are 180 degrees in a triangle, and we’ve just picked now four triangles at random and shown that that’s true. And there’s no way that could have happened by accident. I mean what are the chances of that happening by itself? Remote, aren’t they? [N_F/Obs_1]
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Figure 1: Polygon-angle-sum figure as used by N_F and P_W
As well as calculating the angle sums of each polygon, both teachers envisaged showing that it could be decomposed into triangles. During his lesson, N_F drew by hand onto each DGS figure projected onto the whiteboard so as to show a decomposition of this type:
When it comes to actually drawing or splitting the pentagon or whatever shape into different triangles, then with the diagram on the board and with Cabri, you can just keep creating so many different pentagons and show that you can always split them no matter how you drag it round. [N_F/TInt_1]

At no point, however, did he (or his students) identify the key issue as one of decomposing the angles of a polygon. The most explicit exchange went as follows: 

T: If I start here I can do a triangle across there, and I can do another split to there and that’s one, two, three triangles. Angles in one triangle, how many degrees in a triangle? 

P: 180. 

T: 180. So how many degrees in three triangles?

P: 540.

T: 540 degrees. That’s right. So, we can split a pentagon, a five-sided shape, into three triangles. When you do that split, you must make sure that you don’t cross these lines, I’ve seen some people doing so.  We’ve got a triangle here and a triangle here, but because you’re crossing over here, that’s no good at all. So you mustn’t cross those lines over. [N_F/Obs_1]

In such exchanges, then, splitting the polygon into triangles was treated more as a matter of getting an accepted form of diagram, than as one of decomposing the angles of the polygon into triangular sets. 

With more flexible lesson pacing to permit extended student thinking, there proved to be insufficient time to introduce the idea of dividing polygons into triangles during P_W’s lesson. Anticipating the next lesson (without computer access), P_W talked in broadly similar terms to N_F, although she would have asked students to add segments to their DGS figures: 

We'll probably… spend… time thinking about how to divide them into triangles, which is where I'd have gone with today if they'd have got on quicker with it, or if I had two lessons on the computers, I'd have actually got them to divide them into triangles, using Cabri, to see how many triangles there were in each shape. [P_W/TInt_1]

4.5.2
Dragging within the circle-theorem lessons

At the start of their interviews, both teachers described their circle-theorem lesson in terms which organised results deductively:

Obviously the objectives were to get the students to learn that the angle at the outside was twice the angle in the middle, and also that it therefore didn't change as it moved around the circumference. [N_F/TInt_2]

I specifically was looking at the idea that the angle subtended at the centre was twice the angle subtended at the circumference and all the various things that follow from that. [N_L/TInt_1]

However, the way in which N_F expressed the angle-at-the-circumference property in dynamic terms is notable. So too is the fact that this more dynamically striking result was actually presented first in both lessons, and in both teachers’ (subsequent) statements of the lesson agenda:

First of all that the angle doesn't change as you drag round the circumference, secondly that the angle in the centre is always twice the angle at the outside, and thirdly that if you get a semi-circle the angle in the semi-circle is 90 degrees. [N_F/TInt_2]

I wanted to start by seeing that the angle that you make was always the same, and then the angle at the centre was double, and then I wanted to show them the special case. [N_L/TInt_1]
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Figure 2: Figures used by N_F

For this opening result, N_F used dragging to convey a sense of examining a varying figure:

If you just draw diagrams and pictures then it's not necessarily convincing, especially if it's all done on the board with just a couple of examples, the students can perhaps accept it, but they are not necessarily convinced by it, whereas if you do it on the board and you drag the thing round, then they tend to be much more convinced by what they see. So, I think the technology helps because they can actually see it getting dragged round, they see the angle doesn't change and they are much more convinced, and that's why it's useful in this situation.  [N_F/TInt_2]

Indeed, during the lesson, he drew attention to the limits of the domain, but without developing a mathematical explanation (see Figure 2_original):

If I just pick that point B up and I move it anywhere around that circle, it’s got to stay on the same side as A and C. If I cross that line AC, then it will change. So I can’t cross the line, that line there, I can’t go across that because it’ll change then. But while it’s on the same side, no matter where I put it, it’s always the same.. [N_F/Obs_2]

N_L’s comments about dragging the points in his DGS figure (Figure 3_original) also appealed to a dynamic sense, and illustrated its significance for students:

They've learned a lot more than they would have done if they'd done accurate drawing, seen two or three cases, and then said, 'Now imagine that that would apply to every case'. They can actually drag it round and see that the angles change or don't change depending on what they are doing… in a way that you can't do without that dynamic… I heard one of the boys, for example, saying 'There's something wrong with this, it's always the same angle wherever I move it to'. And then it dawned on him that that was the whole point! [N_L/TInt_1]

By contrast, treatment of the remaining results appealed to dragging more as a means of generating different examples, or of examining a special case:

We looked at the relationship between the centre angle and the angle at the circumference, and wrote a few values down, pairs of values, and asked the students to deduce, if you like, a rule… And then finally stretch the angle at the centre to 180 degrees so that you end up with the angle in a semi-circle rule. [N_F/TInt_2]

Similarly, in N_L’s lesson, students generated DGS figures with different-sized angles-at-the-centre, and this guided subsequent formulation of the result at the board; they then dragged their figures to the necessary position in order to establish the special case. 
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Figure 3: Figures used by N_L

Although neither teacher commented on this aspect of their lessons in interview, both incorporated episodes in which the ‘dynamic’ image of the moving angle-at-circumference was (tacitly) related to the more customary ‘static’ image of two fixed angles-at-the-circumference. In N_F’s lesson, this occurred when students were invited to predict the result of moving an angle to a new position, which was drawn by hand onto the projected DGS figure (see Figure 2_overscribed):

T: What would happen if I picked up angle B and moved it round to there (drawing proposed angle by hand onto projected image). What would it be?  

Pupils answer 60.

T: It says the same, it doesn’t change. So, as I pick that up, you can see that in action… If what you are saying is right, if I pick this particular point up, it should always stay (dragging B round circumference)… It’s staying at 60 all the way. It’s not changing at all.  [N_F/Obs_1]

This demonstration, then, establishes a relationship between –on the one hand– a static image of two distinct angles-at-the-circumference (as the result is typically represented on the page) and –on the other hand– a dynamic image of a single angle being manipulated through dragging the dynamic angle from its original position to occupy the overscribed position. N_L incorporated a similar situation in his lesson. His original DGS figure incorporated two angles-at-the-circumference: as the vertex of one was dragged the other remained static (see Figure 3_original); as either of the other points was dragged, the two angles changed size in tandem. Intentionally or not, these episodes can be seen as serving to establish an important relationship between the dynamic figures employed in these lessons, and the static figures which students would encounter once they moved on to tackle exercises on the page.

4.5.3
Dragging within the corresponding-angles lesson

Turning to the lesson on corresponding angles, P_W suggested that, here, dragging was less important in showing the fact of the equality of particular angles (which her experience suggested would already be evident to her students) than in establishing relationships explaining these equalities: 

This was a top half ability group, so there isn't anyone who's really going to go 'Well I don't know which one's the same.' They're going to go 'Well it's that one and that one, obviously.' But then, we start the 'Why?'… I think that's where they learn the most from watching this. They're trying to break it down and see how, as I move it, why is it changing the same… so as that one changes, so does that, and then because they cross at straight lines. And getting them to really appreciate what makes angles the same.  [P_W/TInt_2]

Development of the DGS figure used by P_W is shown in Figure 3. Dragging point C brought out how the two marked angles changed in tandem. This was followed by a prediction exercise regarding the size of the angles to the left of those marked. Shortage of time meant that further planned activities had to be left to a later lesson.
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Figure 4: Development of figure used by P_W

P_W suggested that the effects of dragging on angle measures provided the primary basis for identifying relationships within figures, through recognition of the interdependence of measures:  

I wanted them to really see it as well, so they could get appreciation for pieces moving, and as it moves, what's equal and what remains the same, what changes, and which ones that change are the same… I was going to get them to measure all of the angles, and really watch that moving… So, obviously the technology would help them enormously with being able to see this. Instead of the static image of two lines with a line crossing it, they could see it moving on to a nice crossing, and really understand that these things are interdependent, and not independent of each other. So as one changes, it affects everything else. [P_W/TInt_2]

4.5.4
Overview of dragging approaches

In the lessons of all three teachers, then, dragging of figures was used to evidence properties in two ways. Most commonly, it was employed to examine multiple examples or special cases of a geometric figure, without particular attention to variation during the dragging process itself, other than in evoking the multiplicity of possibilities. More occasionally, it was used to examine dynamic variation (including non-variation) in a geometric figure during the dragging process, which could extend to demarcating the domain over which a property held. In effect, then, this distinction rests on the degree of explicit attention to dynamic variation in the DGS figure as it is dragged.

Most strikingly, regardless of the type of dragging employed, consideration of geometric properties was almost always mediated by the effects of dragging on numeric measures, the brief exception being the overscribing of figures to show the triangulation of polygons (for which a geometrical rationale was not made explicit). While there were some allusions in passing to shape, space and movement, these played no part in the public analysis of geometric situations. This characteristic was common to the lessons of all three teachers, despite other important pedagogical differences which have already been noted.

5
Overview and discussion of findings

5.1
Overview of findings

In this study we first identified the archetypical status of angle-property topics in the emergent practice of DGS use in mathematics teaching in English secondary schools, on the basis of the examples of successful practice described by highly-regarded mathematics departments. We then explored, in greater depth, the perspectives and practice of three teachers –differing in their broad pedagogical orientation– who had offered such examples, through non-participant observation of five lessons of this type, followed by post-lesson interviews. 

An important consideration for all three teachers was one of working efficiently with geometric figures. On the basis of comparisons with earlier experience of similar teaching approaches, DGS were seen as helpful in escaping repetition of drawing and measurement required when these processes were carried out by hand, and also in improving accuracy. Nevertheless, teachers found themselves addressing difficulties of physical manipulation amongst their students, difficulties in many ways analogous to those occurring when other tools were used to carry out these processes by hand. In both circumstances, the relatively infrequent experience of students in working with the requisite tools appears to be a contributory factor.

All three teachers were concerned about developing viable approaches to classroom tool use. They had developed rather different approaches, consonant with their broader pedagogical style, and reportedly influenced to some degree by the ability of classes and corresponding official expectations. In  moderating students’ development of technique, teachers ranged from giving students no direct experience of DGS construction, manipulation and measurement, to expecting students to make sue of techniques demonstrated by the teacher. There were similar contrasts of approach to managing apparent anomalies of measurement, ranging from careful management of situations so as to suppress such occurrences, to actively capitalising on apparent anomalies in order to promote mathematisation of tool use, and to instil a critical attitude to computer results.
For all three teachers, the prime purpose of DGS use was one of evidencing geometric properties through dragging figures. Most commonly, this involved dragging to examine multiple examples or special cases. More occasionally, it was a matter of dragging to examine dynamic variation. Most strikingly, however, the common approach was one which emphasised mediating geometric properties through numeric measures, with little direct geometrical analysis of situations in order to explain the numeric patterns and theorise the geometric properties. This characteristic was common to the lessons of all three teachers, despite other important pedagogical differences.

5.2
Adapting expert practice

The teaching that we studied was carried out by well-regarded practitioners, who had been motivated to incorporate DGS primarily because of the potential they saw to enhance existing practice. They were able both to demonstrate this enhanced practice in the lessons observed, and to articulate its key features in subsequent interviews.  We have sought to capture and organise these features within our thematic analysis, conveying the way in which DGS use is incorporated into an already functioning pedagogical and didactical system in a way which maintains continuity between computer-based and paper-based tasks. We believe that this analysis will not only be of interest to researchers, but of value to policy-makers and other practitioners seeking to bring about similar development elsewhere and on a wider scale. At the same time, guided by previous analysis of the use of DGS, as well as by the wider literature of mathematics education, we have drawn attention to some characteristics of the practice we observed which were not articulated in teachers’ accounts, where we consider that this may be illuminating (although less strongly grounded than the key features identified by teachers).

In theorising expert teaching as situated expertise, Leinhardt (1988) has highlighted the extent to which successful, experienced teachers draw on contextually developed knowledge, often closely tailored to their working situation, and providing them with a highly efficient system of routines and heuristics for fulfilling their complex role in a holistic way. As Leinhardt points out, educational reform often neglects these crucial features of expert teaching; in particular its organisation as a system, taking a holistic classroom focus, well adapted to the specific conditions in which it occurs and the particular circumstances which it encounters. Correspondingly, our earlier work suggested that integration of ICT use into classroom practice is typically a gradual process in which teachers initially view new technology, and proposals relating to its adoption and use, through the lens of their established practice (Ruthven & Hennessy, 2002). This is also reflected in Laborde’s (2002) identification of different types of DGS use associated with stages in a lengthy process of professional evolution. 

The comparisons made by teachers in this study suggest that their emergent practices of DGS use are currently at a stage where they are adaptations of existing practices, designed to capitalise on relatively immediate affordances of replacing the old technology of hand scribing by DGS. In this respect, escaping repetition of drawing and measurement  represents a technology- and topic-specific counterpart to effecting working processes and improving production in our earlier study, while the central idea of evidencing geometric properties through dragging figures is a similarly contextually-specific counterpart to the earlier theme of focusing on overarching issues and accentuating important features. Other themes, and other comparisons with the earlier study, indicate more problematic issues. Students’ currently limited opportunities to work with DGS seem to be a contributory factor to teachers finding themselves addressing difficulties of physical manipulation. In addition, the perceived complexity of DGS technique poses questions about developing viable approaches to classroom tool use, questions which are differentially answered by teachers according to their perception of linkages between development of DGS technique and geometrical thinking. Intermittent use and limited experience of DGS probably also restrict the scope for realising earlier themes of supporting processes of checking, trialling and refinement  and overcoming pupil difficulties and building assurance. 

In Laborde’s (2001) terms, the practices observed in this study are of the types where tasks are facilitated, rather than changed, by the mediation of DGS. Generating multiple examples for measurement certainly corresponds to the first type of DGS use, concerned with facilitating material actions (and, notably, much of the approach of the polygon angle-sum lessons echoes the French example cited earlier). Nevertheless, Hölzl’s suggestion that such activities reduce to using DGS in little more than a verifying manner may not give sufficient weight to the part which they play, not just in producing empirical confirmation of results, but in evoking for students the geometric situation in play, and the particular terms in which results are formulated. Some more marginal elements of the practice reported here –elaborating figures to show component parts, dragging points to examine dynamic variation, and pursuing apparent anomalies– are closer to Laborde’s second type, concerned with facilitating mathematical analysis. Here, then, there are glimmers of Arzarello’s point that task design and teacher moderation can move classroom activity beyond perceptual impression and empirical verification. Nevertheless, across all these lessons, a strong institutional influence is manifest; for example, the circle-theorem lessons closely mirror Kaiser’s exemplary case of the English empiricist spirit. What needs to be recognised is that, within the systemic subject culture (Ruthven et al., 2004) in which these English teachers are working, mediating geometric properties through numeric measures has become a well-established didactical norm, long predating the introduction of DGS, and presumably well adapted to current expectations of teaching approach and student learning
.

5.3
Redesigning didactical artefacts

However, a more critical examination of these institutional circumstances would be obliged to ask whether this emphasis on mediating geometric properties through numeric measures does not represent an unacceptable degree of curricular narrowing. This is certainly a concern of the recent reports and recommendations referred to earlier. Rather than debating this general point, let us simply illustrate how the central didactical artefacts employed in this study –the dynamic geometry figures– used in common by teachers with different pedagogical orientations, might be redesigned so as to support classroom activity involving a broader range of mathematical thinking, extending –in particular– its visuo-spatial and logico-deductive aspects. In line with the preference expressed by teachers, the proposed figures have been structured to bring out the relevant results. However, to encourage more directly spatial and geometrical thinking, they avoid any use of numerical measurement. Bearing in mind the way in which teachers employed a numerical approach to broach a topic and establish a basic understanding of the geometric situation in play, in practice, work with these figures might also follow on from current numerical approaches, or be adapted to incorporate some element of this type. 

5.3.1
The circle theorems

The circle theorems appear to be a classic case of curricular drift. The primary rationale for including this topic was its epistemic value in providing an exemplary system of local deduction:

This is the ideal group; the results are interesting and are also perfect examples of the deductive rather than the experimental method. (Mathematical Association, 1959: p. 62).

Within this rationale, the ‘angle-chasing’ exercises which now typify the textbook and examination treatment of this topic were regarded as secondary:

Calculations of angles by the use of these properties are needed to drive home the facts, and are generally appreciated by the duller boy as easier than most riders. (Mathematical Association, 1959: p. 63) 

We must, of course, recall (as the language indicates) that these extracts were written in an earlier age, with reference to the curriculum of academically selective schools. Nevertheless, as long as schools continue to teach such topics, it is important to be clear about what distinctive educational function they serve; and, in this case, that function is clearly in exemplifying geometrical analysis.

Consequently, the adapted DGS figure (shown as Figure 5) is intended to support analysis of the geometric mechanisms underpinning the results. It differs from the standard proof diagram only in the inclusion of the two rays, p and r, constructed to run from O, parallel to each arm of the angle-at-the-circumference ABC. These rays provide visual guides when either of the arms moves (and permit an eventual geometrical analysis in terms of alternate and corresponding angles). For example, when A is dragged, p not only remains parallel to its defining arm BA, but manifestly continues to bisect the angle formed by the radius OA and the ray q. As this is happening, the point C, and its associated arm, radius and ray remain static. This dynamic-static situation is reversed when C is dragged rather than A, with the ray q separating the two component systems. Finally, as B is dragged, the rays p and r remain parallel to the arms of angle ABC; they define an identical angle at the centre, which is divided in exactly the same way as angle ABC by the ray q. Through these dragging operations, then, the geometric structure of the figure can be brought out, drawing attention to the relationships which underpin a proof analysis. While the position shown presents the simplest case, in due course, points can be dragged so as to examine other cases. This provides a sound basis not just for formulating the desired properties, but for understanding the structures underpinning them, and organising these ideas in logical terms.
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Figure 5: Adapted figure for circle-theorems topic

5.3.2
The polygon angle-sums

Turning to polygon angle-sums, this an example of a different type of curricular shift, in which what was a relatively minor geometric topic has taken on a new significance in exemplifying the algebraic formulation of sequence patterns. In the course of this shift, emphasis has switched from shape-and-space towards number-and-algebra. The dynamic figures proposed here (as shown in Figure 6) seek to re-emphasise shape-and-space aspects, while respecting the concern with inductive sequence. The intention is to move from empirical induction towards mathematical induction, by decomposing a dynamic polygon into two components: a stable component which takes the form of a polygon of smaller degree, and a variable component which takes the form of a triangle. 

The starting point for this dynamic analysis of polygon angle-sum is the observation that when any vertex is dragged, only its adjacent edges move with it; all other elements of the figure remain static. In the first dynamic figure, for example, dragging the vertex Q also moves the edges QP and QR, but no other vertices or edges of the polygon. The second dynamic figure introduces some supplementary guide-lines to assist analysis of this situation; the segment PR has been marked to help emphasise how dragging Q affects only the triangular form PQR, leaving the remainder of the pentagon (which takes a quadrilateral form) unchanged. In particular, the angles (and part-angles) in this stable component of the pentagon are unaffected by dragging (as long as Q does not cross PR), and sum to the total for a quadrilateral. The angles (and part-angles) of the pentagon which do change under this form of dragging are those within triangle PQR. The line marked through Q, parallel to PR provides a framework for showing that the angles of triangle PQR sum to a straight angle, through observing the effects of dragging and analysing them in terms of alternate angles. 
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pentagon with guides

  polygon with guides

Figure 6: Adapted figure for polygon angle-sum topic

Moving beyond this simplest case, Q can, of course, also be dragged so that it lies on PR (creating a degenerate pentagon), or even ‘beyond’ PR so that the angle PQR within the pentagon becomes reflex (creating a concave pentagon). Again, in each of these cases, the additional line through Q assists analysis of the situation. The final figure was created simply by dragging the pentagon figure slightly out of the DGS window (but who can imagine what might now be there instead), and is intended to help reframe the pentagon as a generic polygon (for which we do not know the specific number of sides). More fundamentally, of course, this whole approach depends on a tacit mathematics of dragging; in particular, on the idea that more complex dragging operations on a polygon can be decomposed into a sequence of vertex dragging operations of the types examined here.
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� Most of the other examples of successful DGS use proposed in the departmental interviews also fitted this norm. 
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