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Introductory comments 
An earlier article (Ruthven, Hennessy & Deaney, 200#) reported on current practice 
in using dynamic geometry to teach about angle properties. The way of using 
dynamic geometry systems (DGS) found to be most widespread involved establishing 
angle properties through dragging a geometric figure and observing its angle 
measures. Typical topics were angle properties of the circle (‘the circle theorems’); 
and the angle sums of the triangle and other polygons. There was an emphasis on 
mediating geometric properties through numeric measures and data pattern 
generalisation. This article will make some speculative suggestions as to how these 
approaches might be adapted and extended so as to support a broader range of 
mathematical thinking, expanding –in particular– its visuo-spatial and logico-
deductive aspects. 

The two topics mentioned above will be examined in turn. First, a summary will be 
given of how the topic was found to be framed in current practice. Then, two further 
ways of framing the topic will be suggested. The first will retain numeric measures, 
but create a situation which brings a system of geometric properties into play rather 
than one or two isolated ones. The second will suppress numeric measures, and 
propose a situation which focuses on direct geometrical analysis. In line with the 
preference expressed by teachers in the course of the earlier study, these situations 
will be carefully structured to bring out the relevant properties. This depends, of 
course, on attention to how the figure changes under dragging, and –more important 
still– to what stays the same –as an indicator of what is generic and paradigmatic 
within the figure. 

 
Angle properties of the circle 
The ‘circle theorems’ appear to be a classic case of curricular drift. Originally, the 
primary rationale for including them was their epistemic value in providing an 
exemplary system of local deduction: 

This is the ideal group; the results are interesting and are also perfect examples of the 
deductive rather than the experimental method. (Mathematical Association, 1959: p. 62). 

Within this rationale, the ‘angle-chasing’ exercises which now typify the textbook 
and examination treatment of this topic were regarded as secondary: 
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Calculations of angles by the use of these properties are needed to drive home the facts, 
and are generally appreciated by the duller boy as easier than most riders. (Mathematical 
Association, 1959: p. 63)  

We must, of course, recall that these extracts were written (as their language 
indicates) in an earlier age, with reference to the curriculum of academically selective 
schools. Nevertheless, as long as we continue to teach this topic, it is important to be 
clear about what distinctive educational function it serves; and that function is clearly 
in exemplifying geometrical analysis of a system of properties. 

As observed, current practice involved taking the simplest figure possible (see 
Figure 1; in some cases, the angle-at-the-centre was only added later; in others, both 
angles were shown from the start). First, the size of the angle-at-the circumference 
was explored by dragging its vertex, P; then its relationship to the size of the angle-
at-the-centre, by dragging the common points, A and B, to generate several pairs of 
angle measures; and last, the special case where A and B are dragged to form a 
straight angle-at-the-centre. Teachers reported that they found this an efficient and 
effective way of covering these topics. 
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Figure 1 
The first reframing of this topic is designed to create a mathematically richer 

situation for empirical exploration (see Figure 2). It involves two additions to the 
figure. First, the chord AB is marked, bringing out the division of the circle into two 
segments: this chord can now be dragged in its own right, so establishing it (rather 
than separate points A and B) as a single entity governing the situation; as it is 
dragged towards or away from the vertex of a particular angle, the size of that angle 
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increases or decreases; as it is dragged over the centre of the circle, the two segments 
come into balance, forming semicircles as the chord becomes a diameter.  

The chord AB  divides the circle into two segments.
P and Q are points on the circumference of the circle.

AB  can be dragged to change the dividing position.
P and Q can be dragged to change their position within 
a  segment, or to move them into the other segment.
 
How does dragging affect the size of the marked angles?
Are the sizes of the marked angles connected in any way?

112.0 °

136.0 °

68.0 °

O

A

P

B

Q

Figure 2 
Second, a further point Q, analogous to P, is added on the circumference: when P and 
Q are positioned in the same segment, they create the standard static figure for the 
angles-in-the-same-segment property (see  Figure 3; variants of this idea were seen in 
lessons observed in the earlier study); when they are positioned in opposite segments, 
they create the standard static figure for the angles-in-opposite-segments, or opposite-
angles-of-cyclic-quadrilateral, property (see  Figure 2). Recognising the case where a 
point-on-the-circumference moves from one segment to the other, or two points-on-
the-circumference lie in opposite segments (cases avoided in the lessons observed) 
not only provides a more complete analysis of the situation, but creates a fuller and 



Micromath, 2005, volume 21, in press  
more coherent system of angle properties (compatible with the current national 
curriculum). 
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Figure 3 

 
The second reframing of this topic is designed to create a mathematically richer 

situation for analysing the geometric mechanisms underpinning the central property 
(see Figure 4). The rays which have been added to the normal figure provide visual 
guides when points are dragged; the dragging of the dynamic figure helps to bring out 
which angles are equivalent in size (particularly for students not yet familiar with the 
proof analysis). When A is dragged, a remains parallel to its defining arm PA, 
creating a system of alternate and corresponding angles; it is also seen to bisect the 
angle formed by the radius OA and the ray o. As this is happening, the point B, and its 
associated arm, radius and ray remain static. This dynamic-static situation is reversed 
when B is dragged rather than A. Under both these forms of dragging, the ray o 
remains static, separating the ‘A’ and ‘B’ components of the geometric mechanism. 
Finally, when P is dragged, o does moves, dividing both the angle APB and its 
counterpart angle aOb in identical ways. Through these dragging operations, then, the 
geometric structure of the figure emerges, notably the angle relationships which 
underpin a proof analysis. 
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This figure helps to analyse the geometric structure 
creating a connection between angles APB  and AOB .
The ray a  has been constructed parallel to PA , the 
ray b  parallel to PB, and the ray o  extends PO.

Which angles in the figure change when A  is dragged, 
when B is dragged, and when P is dragged?
Which sets of angles in the figure keep the same size 
as one another when any of these points is dragged?
Why do these sets of angles keep the same size?
Why does angle AOB  stay double angle APB in size?
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Figure 4 
 
Angle sums of polygons 
This topic provides an example of a different type of curricular shift, in which what 
was a relatively minor geometric topic has taken on a new significance as an example 
of the algebraic formulation of sequence patterns. In the course of this shift, emphasis 
has switched from shape-and-space towards number-and-algebra. The new framings 
of the topic offered here seek to re-emphasise shape-and-space aspects, while 
retaining a concern with inductive sequence. The intention is to move from empirical 
induction towards mathematical induction, through decomposing a dynamic polygon 
into two components: a stable component in the form of a polygon of smaller degree, 
and a variable component in the form of a triangle; a more accessible form of 
mathematical induction than that normally taught.  
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As observed, current practice involved taking a simple polygon figure with the 

measures of all angles marked (see Figure 5), dragging points to generate several 
examples, and summing the angles for each example. The development followed an 
inductive sequence, starting with the familiar cases of the triangle and quadrilateral, 
using these to introduce the dragging approach; then proceeding to pentagon and later 
polygons, so establishing a table of angle sums from which a data pattern could be 
formulated. Later, additional lines were drawn onto figures to show how they could 
be broken down into triangles (although, in the lessons that we observed, it could 
have been made more explicit that the purpose was to decompose the angles of the 
polygon into triangular sets). 
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Figure 5 
 

The first reframing of this topic is designed to create a mathematically richer 
situation for empirical exploration (see Figure 6). Rather than using separate figures 
for triangle, quadrilateral, and pentagon, all three are included in a single figure. 
Moreover, this figure incorporates the relationship that any pentagon can be 
decomposed into a triangle and a quadrilateral in a way which also partitions the 
angles of the pentagon. In the situation proposed, this decomposition provides a way 
of calculating the required angle sums more efficiently.  
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This figure contains a triangle, a quadrilateral, and a pentagon.
It shows the sizes of all the angles in each of these polygons.
Find an efficient way of calculating the angle sums of all 
three polygons.

Dragging points in the figure changes the shape of the polygons.
How does dragging affect the angle sum of each polygon?
Do the angle sums of the three polygons form a pattern?
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Figure 6 
The second reframing of this topic is designed to create a mathematically richer 

situation for analysis of the geometric mechanisms underpinning the inductive step 
(see Figure 7). The starting point is the observation that when a vertex is dragged, 
only its adjacent edges move with it; all other elements of the figure remain static. 
Dragging the vertex Q also moves the edges QP and QR, but no other vertices or 
edges of the pentagon. Introducing some supplementary guide-lines assists analysis 
of this situation: the segment PR has been marked to help emphasise how dragging Q 
affects only the triangular form PQR, leaving the remainder of the pentagon (which 
takes a quadrilateral form) unchanged. In particular, the angles (and part-angles) in 
this stable component of the pentagon are unaffected by dragging (as long as Q does 
not cross PR), and sum to the total for a quadrilateral. The angles (and part-angles) of 
the pentagon which do change under this form of dragging are those within triangle 
PQR. Although students are likely to be familiar with the fact that the angles of a 
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triangle sum to a straight angle, they may not have met –or may be unable to 
recollect– a geometrical explanation for this. The line marked through Q, parallel to 
PR provides a framework for providing such an explanation, through observing the 

effects of dragging and analysing them in terms of alternate angles.  
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Figure 7 
Moving beyond this simplest case, Q can be dragged so that it lies on PR (creating 

a degenerate pentagon), or even ‘beyond’ PR so that the angle PQR within the 
pentagon becomes reflex (creating a concave pentagon). Again, in each of these 

cases, the additional line through Q assists analysis of the situation (see Figure 8).  
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Figure 8 

The final figure (see Figure 9) was created simply by dragging the pentagon figure 
slightly out of the DGS window (but who can imagine what monstrous polygon 
might be lurking there in its place), and is intended to help reframe the pentagon as a 
generic polygon (for which we do not know the specific number of sides). 

 

This diagram shows a polygon which is being
varied by dragging its vertex  Q .
The part of the polygon which is changing forms
the triangular shape PQR . 
The other part of the polygon is not changing, 
and not all of it can be seen.

What kind of shape does this other part form?
Compared to this other shape, how many sides 
does the whole polygon have? and what size is 
the angle sum of the whole polygon?

If this other shape were a triangle, how many 
sides and what angle sum would the polygon have?
If this other shape were a quadrilateral, how many 
sides and what angle sum would the polygon have?
If this other shape were a pentagon, how many 
sides and what angle sum would the polygon have?
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Figure 9 
 



Micromath, 2005, volume 21, in press  
Of course, this whole approach depends on a tacit mathematics of dragging; in 

particular, on the idea that more complex dragging of a polygon can be decomposed 
into a sequence of vertex dragging operations of the type examined here. 
 
Concluding comments 
These suggestions are speculative starting points for adapting and extending current 
approaches to using dynamic geometry to teach about angle properties. They are 
intended to promote and support a broader range of mathematical thinking; in 
particular, visuo-spatial and logico-deductive aspects. Against the background of 
current practice, and in the professional context that shapes it, these ideas may seem 
far-fetched and unrealistic. If not that, they certainly need to be operationalised and 
tested, and adapted to different classroom situations. I would be pleased to hear from 
anyone attempting that, or thinking of doing so. In the future, I hope to find some 
support for sustained collaborative work to develop the classroom use of dynamic 
geometry to support visuo-spatial and logico-deductive aspects of mathematical 
thinking. Again, I would be pleased to hear from any departments or teachers 
interested in working on this. 
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