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Abstract 
At the 5th International Congress of Mathematicians in 1912, one of the first reports of 
the newly founded International Commission on the Teaching of Mathematics (later 
redesignated the International Commission on Mathematical Instruction [ICMI]) focused 
on attempts to give a more central place to intuition and experiment in school 
mathematics. The main areas singled out as part of this trend towards “practical 
mathematics” and creation of the “mathematical laboratory” were geometrical drawing, 
graphical methods, practical measuring and numerical computation. Whereas many of 
the diverse technologies associated with this reform movement faded away, one in 
particular—squared paper—became implanted in school mathematics. This success was 
due to four factors: disciplinary congruence with an influential contemporary trend in 
scholarly mathematics; external currency in wider mathematical practice beyond the 
school; adoptive facility of incorporation into existing classroom practice; and 
educational advantage of perceived benefits outweighing costs and concerns. Parallels 
are drawn with more recent ICMI attention to computer-based technologies as providing 
support for intuition and experiment in school mathematics. 

A Foundational Theme 
The International Commission on the Teaching of Mathematics (later 
redesignated the International Commission on Mathematical Instruction [ICMI]) 
was formed in 1908, by resolution of the 4th International Congress of 
Mathematicians, as a means of promoting international exchange of ideas. At 
that time, there were significant movements for the reform of school mathematics 
teaching within educational systems across Western Europe and North America 
(Howson, 1984), reflecting wider pressure for educational change towards 
practical approaches that would give a more active role to the learner through 
concrete experience relevant to life (Brock & Price, 1980). At the 5th International 
Congress of Mathematicians in 1912, the section on Didactics received ICMI 
reports examining “the current state and modern trends” of mathematics 
teaching (Fehr, 1913, p. 595). In particular, the report of Subcommission A 
[Mathematics in Secondary Education] focused on “Intuition and experiment in 
mathematical teaching in secondary schools” (Smith, 1913); it discussed 
contemporary developments aimed at providing an “intuitive,” “perceptual,” 
“experiential,” and “experimental” base for the subject (p. 611), through 
“applying mathematics seriously to the problems of life, and … visualizing the 
work” (p. 615). This, then, represented a foundational theme for the ICMI. 
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Introducing the Subcommission’s report, Smith (1913) described a “spirit of 
unrest” (p. 613) in secondary education, “in particular with respect to this whole 
question of intuition and experiment in mathematics” (p. 614). His judgment was 
that “more progress towards the recognition of the role of intuition and 
experiment in secondary mathematics seems to have been made of late in 
Austria, Germany and Switzerland than in France, England and the United 
States” (p. 615), and that a key difference of approach lay in “the plan of the 
Teutonic countries to mix the intuitional and deductive work from the outset, 
while in France, and now in England, the plan is to let an inductive cycle precede 
a deductive one [with] the United States [showing the beginnings of a] tendency 
towards the Anglo-French plan” (p. 615). Indeed, this latter plan seems to have 
been indicative of a more qualified view of the place of such work: The report 
noted that, in England, “the prevalent view … is that the proper field for 
methods of intuition and experiment is in the middle and lower classes rather 
than the upper” (p. 613), and that “many teachers consent to the postponement 
of abstract methods during the earlier teaching only on the understanding that 
the abstract character of the higher teaching shall be preserved” (p. 614).  

Some Substantive Manifestations 
The main substantive areas, which the Subcommission singled out in relation to 
this trend to give a more central place to intuition and experiment in the 
mathematics curriculum were geometrical drawing, graphical methods, practical 
measuring and numerical computation.  

Geometrical Drawing 
The report described the situation of geometrical drawing as still evolving, and 
its definition as variable: 

In the matter of geometric drawing and graphic representation of solids, 
the various countries seemed to be in a transition stage between the 
period in which this was considered part of the duties of the art teacher 
and that in which it was to be taken over by the department of 
mathematics. The tendency is general to consider this work part of 
mathematics. The nature of the work is not, however, at all settled; even 
the term “descriptive geometry” has no well-defined meaning (Smith, 
1913, p. 614). 

In some countries, there was a very clear linkage to material traditionally taught 
in art or craft classes or in technical subjects: 

In the curriculum of Bern the course includes work in geometrical 
ornament, such as parquetry flooring; orthogonal projection of geometric 
solids; drawing of conics and other plane curves; drawing of machine 
models; shadow constructions; axonometry; polar perspective; solids of 
rotation; and plans and elevations (Smith, 1913, p. 621). 
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In a paper presented at the previous Congress, Godfrey had portrayed this 
(re)appropriation of “geometrical drawing” to the mathematics curriculum in 
broader educational terms: 

Under the old system the instruction in geometrical drawing had been 
divorced from theoretical geometry, to the detriment of both studies. It 
was frequently taught as a branch of the fine arts rather than as 
mathematics. One result of this has been an exaggerated respect for 
artistic finish and “inking in”; but the worse feature is that “geometrical 
drawing” came to be identified with a vast collection of special and 
unrelated rules; the educational value of the subject had sunk to zero 
(Godfrey, 1909. p. 455). 

Equally, however, Godfrey linked the new place of geometrical drawing in the 
mathematics curriculum to the idea that more formal treatment of geometric 
properties needed to rest on an experiential base: 

The reforming party held that a more vivid realization of the shapes and 
properties of geometric figures was necessary before these properties 
could profitably be made the subject of strict logical treatment (Godfrey, 
1909, pp. 453–4). 

In particular, this “more vivid realization” depended on students developing a 
better grasp of the operation of geometrical instruments and their mathematical 
functionality through direct use of them: 

To experiment in geometry, a child must learn to measure and draw with 
sufficient accuracy … For another reason, too, these instruments must be 
provided. Problems of construction are unmeaning unless it is specified 
what instruments are allowed … Problems of construction, then, cannot 
be undertaken intelligently unless the learner understands these 
instrumental restrictions; and he is not likely to understand the 
restrictions unless he actually handles and uses the legitimate instruments 
(Godfrey, 1909, pp. 454–5). 

At the same time, Godfrey portrayed such “bodily activity” as essential for 
pupils, promoting an active attitude on their part, and improving the quality of 
their thinking: 

Geometrical instruments satisfy the child’s need for bodily activity. He 
thinks better if he is using his fingers. Ideas are suggested to him by the 
activity of drawing figures. His attitude becomes active rather than 
passive (Godfrey, 1909, pp. 455). 

Graphical Methods 
The widespread use of graph paper in scientific and technical work developed 
during the nineteenth century. In the course of an 1833 paper, the astronomer-
mathematician Herschel recommended the use of such paper in terms that make 
it clear that he expected it to be unfamiliar to his readers, since he described both 
its design and manner of use with care. As interest in this new technology grew 
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among scientists and engineers, many manufacturers entered the market. Over 
the second half of the nineteenth century, its price fell by two orders of 
magnitude and its uptake and use increased enormously (Brock & Price, 1980). 
By the early twentieth century, the use of squared (including graph) paper had 
spread to education, as the Subcommission reported: 

Graphic methods of one form or another are now found in the courses in 
mathematics … in all countries, having gradually made their way from 
engineering, through thermodynamics and general physics, to pure 
mathematics (Smith, 1913, p. 622). 

The report indicated that such uptake, while only recent, was widespread; 
indeed the report suggested that so enthusiastic was adoption of this new 
technology that it was in danger of overuse: 

Of the value of squared millimetre paper there is no question anywhere, 
but it seems equally true that its use has been abused by the over-
extensive treatment of equations and by its application to proving the 
obvious (Smith, 1913, p. 614). 

Thus, although linked particularly to the treatment of equations and functions, 
the use of graphical methods extended to many other topics:  

In England about 90% of the schools state that the graphical study of 
statistics is given … The graphical representation of functions is taught in 
all… secondary schools. The work is concerned with the plotting of 
equations and with the approximation of the roots … The use of vectors is 
found in a large majority of the schools, in connection with mechanics 
(velocities, acceleration, forces), this latter subject being part of the 
mathematical course in England … Graphical statics is taught generally. 
Areas are estimated by squared paper in most schools, but the planimeter 
is rarely used (Smith, 1913, p. 622). 

Again, in his contribution to the earlier Congress, Godfrey had illuminated a 
pedagogical motivation for the adoption of such methods, in terms of giving 
greater emphasis to mathematical rationales as well as rules, and of recruiting 
the interest of students: 

Many teachers and examiners held that the teaching had laid too great 
stress on manipulative skill, at the expense of intelligent study of the why 
and wherefore… There was a kind of rebellion against this practice, and 
teachers sought to lighten the “toil” by introducing graphs, logarithms 
tables and other interesting matters at a comparatively early stage. All this 
had a decidedly stimulating effect. It is a revelation to a boy to learn that a 
function of a variable may be associated with a curve; that he can solve 
equations, extract roots, etc. by graphical methods (Godfrey, 1909, pp. 
457–8). 
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Practical Mensuration 
The ICMI Subcommission reported widespread interest in activities such as 
practical surveying as means of bringing measurement and estimation to life; an 
example was: 

In the Prussian schools the theodolite is usually found, and… along with it 
are seen simple instruments for angle measure, angle mirrors and prisms, 
measuring rods, and the like. Simple instruments are often made by the 
pupils, particularly instruments for the measure of angles. Much is made 
of out-of-door work in the classes in geometry and trigonometry, in the 
measuring of heights and distances [by] the pupils making use of the 
instruments (Smith, 1913, p. 617). 

While the report only referred in passing to laboratory work, Godfrey’s account 
of recent trends in England, delivered at the preceding Congress, suggested that 
practical measurement, estimation and computation were closely linked to it: 

Many schools now arrange that boys of 13–15 shall take, as part of their 
mathematics, a course of experimental work in the laboratory. During this 
course they are taught to measure and weigh (incidentally learning to 
realize the advantages of the decimal notation), to determine the surfaces 
and volumes of actual objects, to determine densities and specific 
gravities, to discover the simpler laws of hydrostatics, etc. (Godfrey, 1909, 
p. 453) 

Such laboratory work formed part of a wider movement to develop more 
“heuristic” approaches across mathematics and the sciences as a whole:  

The development of “practical” or “experimental” mathematics as an 
approach to teaching the subject involving the use of apparatus of various 
kinds… and perhaps a special room—a mathematical laboratory … —has 
obvious parallels with the somewhat earlier emergence of practical science 
teaching… The growth of both physics and chemistry teaching, as well as 
demanding the use of various materials and apparatus, was accompanied 
by the rise of a new approach to teaching, “heurism,” or the method of 
discovery (Brock & Price, 1980, p. 370). 

In the United States, the most prominent advocate of a “laboratory method” was 
Moore, a leading mathematician of the time (Roberts, 2001). Writing in the 
American School Review, Moore’s Chicago colleague, Myers elaborated an 
educational rationale for the mathematical laboratory, bringing out the link to 
the wider heuristic movement:  

Fundamentally, laboratory method means work … on the pupil’s part or, 
better still, method of getting work done by the pupil on his own initiative, 
under the impulse of his natural interests, and largely under the guidance of 
his own intelligence (Myers, 1903, pp. 730–731). 
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As with Godfrey, the ideas of illuminating the mathematical rationale of 
problems and recruiting pupils’ interest to them were prominent in Myers’ 
argument: 

An advantage that can hardly be overestimated of the laboratory 
procedure with mathematical classes is that pupils sense the difficulties to 
be overcome as real and natural, actually needing to be resolved and 
demanding a knowledge of the mathematical tool as a means of their 
resolution. In short, it recognizes the educational importance of letting the 
student know both how and why he must use the mathematical tool to get 
on well in any line of study (Myers, 1903, p. 732). 

Myers also appealed to the ideas of linking school mathematics both to practical 
needs beyond the school, and to the development of particular intellectual 
“faculties”:  

Laboratory work with real problems, in the formulation and handling of 
which the pupil habituates himself to the transition from the concrete to 
the abstract, trains the faculties of analysis and abstraction, teaches him to 
make his own mathematical problems, to grow his own mathematics, and 
goes far toward supplementing the too isolated and too abstract teaching 
of secondary mathematics of today (Myers, 1903, pp. 735–736). 

His listing of “a fairly complete equipment for a mathematical laboratory” was 
extensive, and indicated the range of applications envisaged, including: 

Set of drawing instruments, drawing board, T-square, and 30°- and 45°-
triangles for each pupil … Carpenters' tapes, surveyors' tapes, and 
architects' scales … Three-, five-, and seven-place logarithmic tables … 
Logarithmic slide rules and computing machines … A surveyor's 
compass, a transit, and level, and leveling rods and flagpoles … A 
surveyor's plane table and a sextant … Weighing apparatus, as steelyards, 
balances, etc.; pendulums, barometers, and thermometers … Force 
appliances, such as cords, pulleys, etc., and the simple machines … 
Spherical blackboards, both concave and convex … Three plane 
blackboards for projective and descriptive work in geometry … 
Gyroscope taps … (Myers, 1903, pp. 737–738). 

Patterns of Uptake 
The uptake of the technologies associated with these developments was, of 
course, affected by considerations of financial and educational cost, as the 
Subcommission’s report noted in relation to slide rules:  

The slide rule has not yet found general acceptance in the secondary 
schools. The reason for this is thought to be the expense of the instrument, 
the cheaper ones not being accurate enough to be of value; but the 
question of time to acquire the necessary facility is also a serious one. In 
the upper classes the numerical computation is performed almost 
exclusively by the aid of logarithms (Smith, 1913, p. 624). 
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Moderation was a guiding precept for Smith (Donoghue, 2008), evident where 
the report refers to “an extreme laboratory method with a minimum of 
mathematics” (Smith, 1913, p. 614) as part of the spectrum of innovation under 
investigation in the United States. Indeed, the laboratory itself remained rare, 
and practical methods were generally subject to a more restrained classroom 
implementation. Writing soon after, in the British Mathematical Gazette, Fawdry 
(1915, p. 36) noted that the form of “practical mathematics” actually taking root 
in schools was much more modest than envisaged by its advocates, focusing on 
topics such as “numerical evaluation of algebraic expressions, accurate 
construction of geometrical problems, plotting of curves, graphical solutions, 
[and] use of logarithms in computation,” which could “be conducted in a class-
room without the use of further apparatus than a box of instruments, some 
squared paper, and a table of logarithms.” In his appraisal of the failure of the 
laboratory movement in the United States, Roberts points to the impact of a 
range of broader social factors on educational developments: 

With regard to the school environment, Moore, like many other educators, 
largely failed to foresee the consequences of changing demographics. In 
the face of the surge of students into the schools, calls for educational 
efficiency that had emerged during the last half of the nineteenth century 
became much more insistent and attractive. The efficiency advocates 
claimed to offer means to control the flood of students by carefully 
circumscribing requirements in terms of time and effort. In contrast 
Moore's “mathematical laboratory,” which called for such extravagances 
as performing all demonstrations in two different ways and for blurring of 
subject-matter boundaries, could well be seen as a prescription for waste 
and confusion. Moreover, at the very time that Moore was proposing to 
justify mathematics education primarily as an aid to science and 
engineering, the population of high school students was exploding with 
students, most of whom were not aiming to become scientists or engineers 
(Roberts, 2001, p. 694). 

It seems that graphical methods, particularly in algebra, were the most 
conspicuous success of these reform movements in terms of pervasiveness and 
permanence: 

The use of graphical methods in elementary algebra teachings is universal 
and entirely a twentieth century development. Other aspects of the same 
movement are the adoption of descriptive geometry by the 
mathematicians, the use of handy 4-figure tables, and of graphical 
methods in statics, and, though, in these cases, the victory is less complete 
than that of the “graph,” it is remarkable and equally modern (Godfrey, 
1913, p. 641). 

Brock & Price argue that the adoption within school mathematics of the 
technology of squared (including graph) paper reflected the influence of new 
educational philosophies and wider pressure to strengthen scientific and 
technical education. But as well as these drivers external to mathematics itself, 
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the internal motor of Klein’s advocacy of “functional thinking” should not be 
underestimated. Such functional thinking was portrayed as a core mathematical 
process, integrating pure and applied mathematics, fusing arithmetic with 
geometry (Klein, 1908). Even if the Subcommission’s report expresses some 
skepticism as to whether pupils were learning to think functionally through their 
use of squared paper, this concern does demonstrate the significance of the 
association: 

Graphic methods of representing functions have become universal in the 
last generation. From the idea of a line representing an equation the 
tendency is at present to that of graphic representation of a function. Just 
how much the pupil is acquiring the function concept seems often to be 
questioned, and the whole subject is in the experimental stage at present 
(Smith, 1913, p. 614). 

Why was it, then, that squared paper prospered whereas many other 
technologies associated with this reform movement faded away? I suggest that 
its success depended on the conjunction of the following features: 
• Disciplinary congruence with an influential contemporary trend in scholarly 

mathematics. 
• External currency in wider mathematical practice beyond the school. 
• Adoptive facility in terms of ease of incorporation into existing classroom 

practice.  
• Educational advantage through perceived benefits of use considerably 

outweighing costs and concerns. 

A Continuing Preoccupation 
Modern parallels to this episode are intriguing. The commercialization and 
diffusion of new mathematical technologies during the nineteenth century for 
use within scientific and technical professions prefigures a rise of similar 
computerized technologies in the twentieth. Even more striking is the 
educational appropriation of both waves of new technology to aspirations for 
more authentic involvement of students in mathematical activity. 
Such aspirations were evident at the ICMI Study Conference on technology held 
in 20061, not least in the opening address from a longstanding advocate for a 
stronger emphasis on intuition and experiment in school mathematics: 

The “Math Wars” … pit Reformers against an Unholy Alliance of 
Mathematicians and Back-to-Basics fundamentalists. The principled 
conflict is between rigor and engagement: the Reformers use slogans like 
engaged, child-centered and authentic; the Mathematicians accuse them of 
producing a “fuzzy math” stripped of the essence of mathematical 
thinking. Both sides are right in the values they assert. … Adopting 
principles of computation (including but not confined to programming) as 
the new Basics opens the possibility of creating a new math that is more 
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engaging than what the Reformers propose and more rigorous than what 
the Alliance defends (Papert, 2006). 

The most influential expression of these ideas over the last forty years has been 
Papert’s (1980) conception of the “microworld” in general, and its specific 
instantiation in Logo. Following the publication of Mindstorms (where one can 
find particular echoes of Godfrey’s emphasis, seventy years earlier, on the role of 
instrumented construction and bodily activity), Logo attracted widespread 
interest amongst educationalists and teachers during the 1980s, achieving some 
degree of curricular recognition by the early 1990s. Agalianos, Noss & Whitty 
(2001) have argued that the rise of Logo during this period was facilitated by an 
educational climate receptive to progressive educational ideas, just as the 
ensuing “conservative restoration” precipitated its decline. Nevertheless, even at 
the height of its influence, mainstream use of Logo largely involved selective 
assimilation to conventional practice:  

[With] Logo’s introduction into mainstream US and UK schools in 1980 … 
the majority of classrooms took up Logo as part of an incremental view of 
educational change and were quick to absorb it into existing modes of 
work. Logo became a reinforcing agent of the traditional rather than a 
vehicle of the new (Agalianos, Noss & Whitty, 2001, p. 497). 

Indeed, one could point to influential factors—similar to those operating a 
century earlier—that acted against the continuation even of this incremental use 
of Logo. In terms of disciplinary congruence, during the period of Logo’s rise the 
“algorithmic thinking” associated with computer programming was being 
proposed as a modern equivalent of Klein’s “functional thinking” (directly by 
Engel, 1977/1984; and, for example, in the revised publication arising from the 
earlier ICMI Study Conference on technology held in 1985, indirectly by Maurer, 
1992, and by report in Graf, Fraser, Klingen, Stewart & Winkelmann, 1992): 
However, this position failed to achieve widespread acceptance, and lost ground 
as a wider range of software became available with new types of user interface 
which pushed programming into the background. This general trend also 
affected the external currency of programming; moreover, the commercialization 
of Logo led to it becoming associated with elementary education, and 
differentiated from the types of programming language and mathematical 
software used at later stages of education or outside education (Agalianos, 
Whitty & Noss, 2006). In terms of adoptive facility, like most computer-based 
resources over this period, the lack of a viable platform suited to conventional 
classroom use was an important barrier; it is notable, for example, that successive 
TIMSS surveys have shown much higher levels of access to and integration of 
calculators in secondary school mathematics compared to computers. Finally, in 
terms of educational advantage, the perceived value of Logo diminished as the 
place of more open and extended work in school mathematics was downplayed 
(due to the reductive trends noted by Agalianos et al.); equally, in this context, 
the lack of strong alignment between the expression of many mathematical ideas 
in Logo and their recognized curricular form became more acutely perceived as 
problematic.  
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In the light of similar disappointments from wider attempts to incorporate 
computer use into school mathematics, other contributions to the 2006 ICMI 
Study Conference struck a more reserved note than the opening address, 
commenting, for example, that: 

[W]ide scale attempts to insert digital technologies into Brazil’s public 
schools system have tended to emphasize the computer as a catalyst for 
pedagogical change, without acknowledging the epistemological and 
cognitive dimensions associated with such change or the complexity 
associated with the appropriation of tools into mathematical and teaching 
practices (Healy, 2006, p. 79). 

In addition to reports such as this, evidence from the most recent TIMSS 
international study (Mullis, Martin, Gonzalez & Chrostowski, 2004, pp. 294–295) 
shows that pervasive computer use is extremely rare in school mathematics, in 
line with a wider trend across the academic curriculum. Reviewing the 
educational reception of wave upon wave of new information and 
communication technologies over the last century, Cuban (1986, 2001) has 
suggested that a recurrent pattern of response can be found: a cycle in which 
initial exhilaration then scientific credibility give way to practical 
disappointment and consequent recrimination. He reports that while new 
technologies have broadened teachers’ instructional repertoires to a degree, they 
remain relatively marginal to classroom practice, and are rarely used for more 
than a fraction of the school week. For scholars of school reform, this forms part 
of a much wider pattern of largely unsuccessful attempts to change the structures 
of curriculum, pedagogy and assessment at the heart of schooling. Nevertheless, 
as this paper has argued, it seems that some mathematical technologies—notably 
computational tables and squared paper a century ago, and their current 
counterparts in the form of arithmetical and graphical calculators—have been 
able to implant themselves successfully in secondary school mathematics, and 
that these successes can be explained in terms of a particular conjunction of 
conditions. Equally, however, the evidence from TIMSS and elsewhere is that 
these tools are used largely to effect or check arithmetical and graphical 
computation, extending only rarely to support intuition and experiment. Here 
again, then, there are important parallels between the limited way in which more 
widespread uptake of selectively adopted new technologies unfolded in the early 
twentieth and early twenty-first centuries. 
 

Note 
1 Only the conference abstracts were publicly available at the time of writing. 
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