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This paper examines three areas of challenge for the integration of digital 
computational tools into school mathematics. The ecological challenge involves 
adapting everyday practices of school mathematics in response to the 
introduction of such tools. The epistemological challenge involves developing 
disciplinary and didactical knowledge to guide the use of such tools in school 
mathematics and the associated evolution of the subject. The existential 
challenge involves understanding how social representations, values and 
identities shape the use (and non-use) of such tools. 

Introduction 
Responding to the conference theme – ICT in mathematics education: the future 
and the realities – this paper examines three areas of challenge relating to the 
integration of digital computational tools into school mathematics: 

• Ecological: adapting the everyday practice of school mathematics to make 
use of such tools within the operative constraints of time, space and 
infrastructure. 

• Epistemological: developing disciplinary and didactical knowledge to 
inform the use of such tools in school mathematics and the associated 
evolution of the subject. 

• Existential: understanding how (collective and individual) 
representations, values and identities relating to school mathematics 
mediate the use (and non-use) of such tools. 

Ecological challenges 
The introduction of digital computational tools into school mathematics involves 
change in the range of material resources available and sometimes in the physical 
environment in which teaching and learning take place. These changes bring 
perturbations to, and adaptations of, established relations between teacher, 
students, subject and tools which I have tried to capture in my Structuring 
Features of Classroom Practice framework (Ruthven, 2009). This framework was 
developed by taking disparate ideas originally developed to understand such 
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issues prior to the arrival of digital computational tools, and drawing them 
together in the light of early studies of the introduction of such tools. 

The use of digital resources often involves changes in the working 
environment of lessons in terms of room location, physical layout and class 
organisation, requiring modification of the classroom routines which enable 
lessons to flow smoothly (Jenson & Rose, 2006). Equally, while new 
technologies broaden the range of tools and resources available to support school 
mathematics, they present the challenge of building a coherent resource system 
of compatible elements that function in a complementary manner and which 
participants are capable of using effectively (Amarel, 1983). Likewise, 
innovation may call for adaptation of the established repertoire of activity 
formats that frame the action and interaction of participants during particular 
types of classroom episode, combining to create prototypical activity structures 
for particular styles of lesson (Leinhardt, Weidman & Hammond, 1987).  

Moreover, incorporating new tools and resources into lessons requires 
teachers to develop their curriculum script for a mathematical topic, the 
cognitive structure which informs their planning of lesson agendas, and enables 
them to teach in a flexible and responsive way. This structure covers variant 
expectancies of events and alternative courses of action, forming a loosely 
ordered model of goals, resources and actions for teaching the topic. It 
interweaves mathematical ideas to be developed, appropriate topic-related tasks 
to be undertaken, suitable activity formats to be used, and potential student 
difficulties to be anticipated (Leinhardt, Putnam, Stein & Baxter, 1991). Finally, 
teachers operate within a time economy in which they seek to optimise the ‘rate’ 
at which the physical time available for classroom activity is converted into a 
‘didactic time’ measured in terms of the advance of knowledge (Assude, 2005).  

Let me illustrate this framework through the particular case of a teacher 
developing his teaching practice to make use of dynamic geometry (Ruthven, 
2010). In terms of working environment, each session started in the teacher's 
normal classroom and then moved to a nearby computer suite. This movement 
between rooms allowed the teacher to follow an activity cycle in which working 
environment was shifted to match changing activity format. Starting sessions in 
the classroom avoided disrupting established routines for launching lessons, 
providing an environment more conducive to maintaining student attention 
“without the distraction of computers in front of each of them.” In the recently 
set up computer suite the teacher was still establishing start-up routines with 
students for opening a workstation, logging on to the school network, using 
shortcuts to access resources, and maximising the document window. The 
teacher was also developing shut-down routines. Near the end of each session, he 
prompted students to save their files and print out their work, reminding them to 
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give their file a name indicating its contents, and to put their name on their 
document to make it findable amongst output from the shared printer. 

In terms of resource system, this teacher saw work with dynamic software as 
complementing the established construction work with classical manual tools 
which preceded it, by strengthening attention to geometric properties. 
Nevertheless, he felt that old and new tools lacked congruence, because certain 
manual techniques appeared to lack computer counterparts. Accordingly, he saw 
dynamic software as involving different methods and having a distinct function: 
“I don’t think there’s a great deal of connection. I don’t think it’s a way of 
teaching constructions, it’s a way of exploring the geometry.” The teacher was 
also concerned that students were spending too much time on cosmetic aspects of 
presentation. He was trying out a new lesson segment which involved showing 
students an example illustrating to what degree, and for what purpose, it was 
legitimate to “slightly adjust the font and change the colours a little bit, to 
emphasise the maths, not to make it just look pretty”, so establishing socio-
mathematical norms for using the new tool.  

In terms of activity structure, the teacher's account of his lesson pointed to a 
combination of activity formats: “a bit of whole class, a bit of individual work 
and some exploration”; a structure that the teacher wanted “to pursue because it 
was the first time [he]’d done something that involved all those different 
aspects.” The teacher also highlighted how arrangements had not worked as well 
as he would have liked in fostering discussion during student activity. He would 
be giving more thought to how best to organise this. The teacher noted ways in 
which use of the software helped to structure and support his exchanges with 
students, creating three-way formats of interaction between student, computer 
and teacher. Such opportunities arose from helping students to identify and 
resolve bugs in their dynamic geometry constructions. The use of text-boxes 
created conditions under which students could be more easily persuaded to revise 
their written comments. 

In terms of curriculum script, the teacher reported that he was developing 
new knowledge of “unusual” and “awkward” aspects of software operation liable 
to “cause a bit of confusion” amongst students, as well as of how to turn such 
difficulties to advantage in helping students to develop the target mathematical 
ideas for this lesson. In the first session of the lesson, after an opening 
demonstration by the teacher, students themselves used the software to construct 
a dynamic figure consisting of a triangle and the perpendicular bisectors of its 
edges, and were then asked to investigate this construction. The teacher was 
developing strategies for helping students appreciate that concurrence of 
perpendicular bisectors was geometrically significant, by getting them to drag the 
dynamic figure: “I don’t think anybody got that without some sort of prompting. 
It’s not that they didn’t notice it, but they didn’t see it as a significant thing to 
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look for." In the second session, using the dynamic figure that they had 
constructed the previous day, students investigated how the position of the point 
of concurrence of the perpendicular bisectors was affected by dragging vertices 
to change the shape of the triangle (see Figure 1). During this session the teacher 
asked the class about the position of this ‘centre’ when the triangle was dragged 
to become right angled. Afterwards, he commented that he “was just expecting 
them to say it was on the line” and that he had not anticipated what a student 
pointed out: "I don’t know why it hadn’t occurred to me, but it wasn’t something 
I’d focused on in terms of the learning idea, but the point would actually be on 
the mid point." One can reasonably infer that the teacher's curriculum script 
developed to encompass this new variant as a direct result of this episode.  

 

 
Figure 1: Example of a dynamic figure under investigation in the lesson  

 
In terms of time economy, this teacher linked his overall management of time 

to key stages of investigation – “the process of exploring something, then 
discussing it in a quite focused way as a group, and then writing it up” – in which 
students moved from being “vaguely aware of different properties” to being able 
to “actually write down what they think they’ve learned.” Because he viewed the 
software as a way of engaging students in disciplined interaction with a 
geometric system, he was willing to spend time to make them aware of the 
construction process underlying dynamic figures by “actually putting it together 
in front of the students so they can see where it’s coming from.” Equally, he was 
willing to invest time in having students learn to use the software. 

This example of a teacher's developing craft knowledge relating to working 
environment, resource system, activity structure, curriculum script and time 
economy conveys the extent of the professional learning involved in adapting 
everyday teaching practice to the changing ecology created by the introduction to 
school mathematics of a digital mathematical tool such as dynamic geometry. 
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Epistemological challenges 
Many types of digital computational tool are still at a relatively early stage in 
their evolution, with significant differences of design between alternative tools of 
similar type, and between successive generations of a particular tool. This adds to 
the complexity of establishing stable mathematical didactical analyses. For 
example, Mackrell (2011) found considerable diversity in basic features of the 
most commonly used dynamic geometry packages: 

• Different repertoires of tools and organisation of them. 
• Different styles of interface and modes of interaction. 
• Different and inconsistent order of selecting action and object. 
• Differing modes of behaviour of figures under dragging. 

She comments that “This diversity is an indication that creating [a] program is 
not simply a matter of representing the conventions of static Euclidean geometry 
on a screen, but is dependent on the epistemology of the designer and is 
influenced by both cultural conventions and pedagogical considerations” (p. 
384). Mackrell also comments on the limited volume of research on the impact of 
such design decisions, even for well-known ones such as selection order and the 
draggability of objects.  

Moreover, the mathematical representations and actions provided by digital 
computational tools may diverge in important respects from those associated 
with traditional written inscription. This calls for mathematical didactical 
analysis to establish a coherent intellectual framework covering the digital and 
the traditional, and to establish appropriate curricular sequences. For example, 
the idea of dragging has developed in ways quite unanticipated when the first 
dynamic geometry software was created. Arzarello et al. (2002) have identified a 
wide variety of ways in which dragging may be used with dynamic figures, 
including: 

• Wandering dragging: of points without a plan in order to discover 
configurations or regularities in the drawing. 

• Bound dragging: of a point already linked to an object. 
• Guided dragging: of the basic points of a drawing in order to give it a 

particular shape. 
• Dummy locus dragging: of a basic point so that the drawing keeps a 

property. 
• Line dragging: drawing new points along a line in order to keep the 

regularity of the figure.  
• Linked dragging: of a point attached to an object.  

But we still await development of a full mathematical theorisation of dragging. 
Equally, little of the didactical analysis necessary to incorporate dragging into the 
curriculum and to underpin a systematic development of curricular sequences has 
yet been undertaken. 
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Such curricular sequences must acknowledge the expansion of mathematical 
concepts and techniques which digital computational tools make available. While 
it is relatively straightforward to bring such tools to bear on familiar tasks, 
ultimately a renewed curriculum must incorporate tasks which would be 
inconceivable without the mediation of digital computational tools, and this, of 
course, calls for a corresponding shift in mathematical thinking. Laborde (2001), 
reflecting on a multi-year project working with teachers, has identified a 
progression in types of curricular scenario employing dynamic software (which I 
exemplify here in relation to the geometrical topic already discussed): 

• Facilitates material aspects of familiar task: e.g. construction of a 
diagram consisting of a triangle and its perpendicular bisectors. 

• Assists mathematical analysis of a familiar task: e.g. through dragging 
the triangle to identify the concurrence of perpendicular bisectors as 
an invariant property. 

• Substantively modifies a familiar task: e.g. dragging the triangle to 
identify a variable characteristic which correlates with the internal or 
external positioning of the circumcentre. 

• Creates a task which could not be posed without dynamic software: 
e.g. a task in which three circles have been constructed with a 
common free centre, each circle passing through a different vertex of 
the triangle; dragging of the 'free' centre is then used to identify the 
conditions under which two or all three of the circles coincide (see 
Figure 2). 

 

 
Figure 2: Construction for investigating where to position a common 
centre so that circles, each passing through one triangle vertex, coincide  

But tools differ in complexity. Dynamic geometry systems are relatively 
complex tools which radically augment available mathematical representations 
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and actions, and which have not yet achieved stability in design. By contrast, the 
arithmetic calculator is much less complex, employs broadly familiar 
mathematical representations and actions, and has achieved relative stability in 
design. Its use in primary mathematics was the subject of extensive 
developmental work through the ‘calculator aware’ number project which 
influenced the English National Curriculum established in 1989 (Shuard et al., 
1992). In particular, this led to the inclusion in that curriculum of a detailed 
section on calculator methods – alongside more extensive sections on mental and 
written methods – which evolved over time.  

 Official guidance recognised that, despite its congruence with established 
mathematical representations and actions, the introduction of the arithmetical 
calculator to primary school mathematics had a number of implications for 
curricular sequences. In particular, the availability of a calculator made it 
possible for children to tackle problems using real data relating to familiar 
situations from an early stage; use of, and experimentation with, the calculator 
led to children encountering negative numbers and decimal fractions much 
earlier than in the traditional curriculum; the ease of computation with a 
calculator made experimental methods of problem solving based on trial and 
improvement much more feasible.  

However, the English National Curriculum has never specified any standard 
calculator methods of computation to mirror standard written methods. In the 
cases of addition, subtraction and multiplication, of course, the relatively 
straightforward way in which such operations are performed on the calculator 
means that there can hardly be said to be a distinctive calculator method as such. 
However, the case of division is less straightforward, because the calculator 
carries out a particular form of division, meaning that it can be necessary to 
interpret the calculator result and translate it into an alternative form. Had the 
curriculum made explicit the need for a calculator-based method of quotient and 
remainder division, this would have provided a publicly visible capstone for the 
'calculator aware' curriculum. Such a capstone could stand alongside – if not 
replace – the long division algorithm, the culmination of the traditional written 
arithmetic curriculum, which, for many members of the public, is a totemic 
mathematical achievement. 

Existential challenges 
The introduction of digital computational tools has a potential to modify and to 
be perceived to call into question certain established features of school 
mathematics. To the extent that such features are highly valued, particularly by 
powerful and influential groups, the introduction of these tools, or development 
of their use beyond a certain point, is likely to encounter reluctance or more 
active resistance. This process is mediated by the social representations in 
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circulation: the simplifying models through which people make sense of a new 
and unfamiliar phenomenon by relating it to more established and familiar ones. 

It is the calculator which has become the popular archetype around which 
prevalent social representations of digital computational tools in school 
mathematics are formed. In England, at least, this is reflected in a shift in policy 
that has taken place at all levels of schooling towards a curriculum that is more 
'calculator beware' than 'calculator aware'. In 2011, when the English government 
announced a review of the National Curriculum, this extract from a press release 
by one of the politicians who was to serve as schools minister during the period 
of the review conveys the government's sentiments on this matter: 

We should ensure that schools equip children with the mathematical basics that 
allow them to succeed in life. We are in danger of producing a ‘Sat-Nav’ 
generation of students overly reliant on technology. (Truss, 2011)  

Discussion on an online comment board – from The Guardian, a newspaper 
with a broadly liberal readership – provided me with an opportunity to gauge 
popular opinion on this matter and to analyse the associated social 
representations (Ruthven, 2013). Many of the comments depict the use of 
calculators by pupils as antagonistic to thought and subversive of intelligence:  

One of the most important things that a child learns is the ability to think. If 
you give them a tool that discourages that at such a young age, that aspect of 
their thinking will be stunted. 

A child's mind needs exercise just as their body does. 

Nothing clever about using a calculator to work out numbers. 

Some comments portray use of calculators not only as developmentally 
debilitating but as a morally iniquitous avoidance of effort:  

Using a calculator… rots the brain, not to mention the poor ethic it instils…  if 
they don't work out the answers with hard graft.  

Going straight for the answer is the easy, cheap and wrong way to go. 

Where contributions concede that using a calculator does involve a degree of 
expertise, this tends to be presented as distinct from mathematics itself: 

Learning to work a calculator is only learning to work a calculator, not learning 
how to do maths. 

A common suggestion is that access to calculators should be granted pupils 
only once they have become confident with number and proficient in mental or 
written calculation: 

They should learn how basic arithmetic works first, which means doing it 
either in their head or on paper. 
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Some comments are salutary in showing how opposition to calculators is 
embedded in contributors’ sense of personal worth, grounded in their own 
educational experiences. One such identity narrative from a contributor conveys 
a sense of personal accomplishment associated with mastery of mental and 
written calculation, expressed in a continuing proud refusal of the calculator: 

I learned arithmetic the old-fashioned way, using a sums book, following the 
methods demonstrated by the teacher on the blackboard. By six, I could add 
and subtract up to a hundred, by eight I had long division and multiplication, 
and all the tables to ten… My mathematical skills took me all the way through 
A level into degree-level statistics, and then a (boring) first job in Health 
Service data analysis. I have never owned a stand-alone calculator, and I don't 
use the one in MacOs X. 

Another (atypical) identity narrative conjures up a very different type of 
personal history, offering a sense of how, for some pupils at least, calculators 
serve as a catalyst for developing interest and capability with numbers: 

I am really good at mental arithmetic, but as a child abhorred rote learning of 
times tables, couldn't see the point as I could work them out in an instant. It 
almost alienated me completely from maths, luckily playing with calculators… 
rekindled my interest in number games. So when I was older and scientific 
calculators starting coming in… I used to play with it, especially the functions 
that worked out means and standard deviations. That set me up well for the 
types of maths I used in later life, inferential statistics.  

This narrative indicates that there are some threads of popular opinion which 
are more positive about calculator use in school mathematics. Nevertheless, it 
seems that the currently dominant strands of popular thought tend to devalorise 
the use of calculators in particular, and of digital computational tools more 
generally, through the following polarised associations: 

• Cognitive self-sufficiency: thinking ‘independent’ of digital tools 
versus unthinking ‘dependence’ or ‘over-reliance’ on such tools. 

• Mathematical essence: ‘purely’ mathematical mental/written methods 
versus (wholly/partially) ‘non-mathematical’ use of digital tools. 

• Moral virtue: ‘effortful’ use of ‘rigorous’ mental/written methods 
versus ‘lazy’ recourse to ‘slipshod’ use of digital tools.   

• Epistemic value: use of mental/written methods taken as exercising 
intelligence and developing understanding versus use of digital tools 
taken as doing neither. 

Transforming such representations, many of which are shared, at least in part, by 
educators themselves, represents a considerable challenge for the field. 
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Conclusion 
In the light of these – still not well understood – ecological, epistemological and 
existential dimensions, we should not be surprised at limited progress to date in 
integrating digital computational tools into school mathematics. At the same 
time, this paper has tried to show how research has started to give us a better 
understanding of these issues, and has the potential to develop new knowledge 
which can help to tackle these challenges.  
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