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1  Introduction to the study 
This study was commissioned in October 2002 as one element of a 3-year QCA project on Algebra 
and Geometry at Key Stages 3 and 4, scheduled for completion in March 2003. The aim of the 
project –as a whole- is to provide advice and support for schools so they can develop and 
strengthen the place of algebra and geometry within the mathematics curriculum framework. The 
aim of this study –as a particular component of the project- is to investigate the potential of 
dynamic geometry software (DGS) to support curricular activities which link algebraic and 
geometric reasoning, in the light of new developments in the capabilities of such software. 

1.1  The international context of the study 
Previous work within the project (Hoyles, Foxman & Küchemann, 2002; Sutherland, 2002) has 
compared the treatment of geometry and algebra in the current mathematics curriculum for English 
schools with that in other educational systems. 

1.1.1  Approaches to geometry 
The geometry report (Hoyles, Foxman & Küchemann, 2002) found that although there were 
substantial differences between curricula in the conception and organisation of geometry, it was 
possible to identify a common core of content concerned with measures, angles and shapes. The 
report describes the English intended curriculum as emphasising experimental approaches in 
geometry through ‘discovering’ rather than ‘proving’ properties and relationships (p. 2). It suggests 
that the difference between the intentions  of the English curriculum and those of countries such as 
France, Japan and Singapore is that the latter provide “clear[er] goals and progression for content in 
geometry – either as an object in its own right or as a tool for problem-solving or proof” (p. 3). The 
report indicates that “all the countries surveyed place a greater emphasis on geometrical 
constructions and on working in [three dimensions] than in England, although how these 
constructions are actually expected to be performed… varies between countries” (p. 3). Finally, 
while most systems see ICT as playing a part in the geometry curriculum, specifications of its role 
are usually marginal or fragmented. The exception is Singapore which provides “detailed 
guidelines for teachers on the integration of ICT into mathematics with dynamic geometry software 
and calculators commonly in use” (p. 3). 

1.1.2  Approaches to algebra 
The algebra report (Sutherland, 2002) found that the curriculum in England (in common with other 
anglophone systems) gives emphasis to “algebra as a means of expressing generality and patterns”, 
in contrast to emphases elsewhere on “symbolising mathematical relationships”, on “link[ing]… 
different representations of variables”, or on “algebra as a study of systems of equations” (p. 2). It 
indicates that “the idea of introducing algebra within the context of problem situations” is 
widespread across systems, but that “these problem situations are sometimes more traditional word 
problems… and are sometimes more ‘realistic modelling situations’” (p. 3). While the report 
comments that most systems “make an explicit reference to the use of new technologies in the 
curriculum” (p. 4), the infrequent mention of ICT in the remainder of the report, including the 
tabulated curriculum summaries, suggests that –as in geometry- specifications of its role tend to be 
marginal or fragmented.  
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1.1.3  Use of computer-based tools and resources 
Internationally, an indication of the extent to which computer-based tools and resources are used in 
lower-secondary school mathematics is provided by the recent international surveys conducted as 
part of the original and repeated implementations of the Third International Mathematics and 
Science Study [TIMMS] (Beaton et al., 1996: 168; Mullis et al., 2000: 217-8). Averaged across the 
23 educational systems participating in both surveys, the proportion of eighth-grade students 
reporting some degree of computer use in their mathematics classes rose, between 1995 and 1999, 
from 17 per cent to 21 per cent, while the proportion reporting such use as occurring more than 
‘once in a while’ remained steady at 5 per cent. In the first survey, England –at 55 per cent- was the 
system with easily the largest proportion of students reporting computer use, followed by the 
United States –at 31 per cent, and both these figures were considerably higher than the median 
across systems –at 11 per cent. In the second survey, England was joined by Singapore, the system 
showing by far the most marked increase over the intervening period –rising by 44 percentage 
points. However, the median change across systems was a rise of 2 percentage points. Moreover, 
the proportion of students reporting using computers more than ‘once in a while’ was only 10 
percent in England, 11 percent in the United States, and 5 per cent averaged across systems. 
Typically, then, computer use remains low, and its growth slow. 

1.2  The national context of the study 
In bringing observations from these international studies to bear on the current English curriculum 
for ages 11-16, fuller account needs to be taken of important aspects of the national context. 

1.2.1  Pre- to post-16 progression in the mathematics curriculum 
One important aspect of national context is progression from the compulsory study of mathematics 
(between ages 11 and 16) into optional mathematics courses (after age 16); in particular, to courses 
leading to AS- and A2-level awards in Mathematics, and to the free-standing mathematics units on 
Working with algebraic and graphical techniques and in Modelling with calculus which can 
contribute to an AS-level award in Use of Mathematics. The essential point is that these post-16 
courses are largely built around a synthesis of algebraic and geometric ideas and methods to focus 
on important forms of quantitative covariation. They give no emphasis to geometry as a self-
contained system, and relatively little to algebra in these terms. This indicates the importance of 
building a secure base in the pre-16 curriculum to anticipate this synthesis of algebraic and 
geometric technique. In particular, the international curricular comparison points to the importance 
of approaching algebra in a way which gives suitable emphasis –in their terms- to ‘symbolising 
mathematical relationships’ and ‘linking different representations of variables’, as well as to 
‘expressing generality and patterns’. It also suggests that current curricula may underestimate the 
potential of geometrical problems and investigations as a productive focus for such activity, 
alongside ‘traditional word problems’ –limited in scope and open to stereotyped presentation- and 
‘realistic modelling situations’ –vulnerable to contextual ambiguities and noisy data.  

1.2.2  Current national initiatives in secondary education 
Another factor is the development of the Framework for teaching mathematics as part of the Key 
Stage 3 National Strategy. This document has elaborated the National Curriculum specification for 
Mathematics to provide much more detailed guidance on curriculum content and teaching 
approaches. The published rationale emphasises algebra as generalised arithmetic, but also 
acknowledges those aspects concerned with relationships between variables, functions and graphs 
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(DfEE, 2001: p. 14). This rationale emphasises geometry as “the study of points, lines and planes 
and the shapes that they can make, together with a study of plane transformations”, identifying as 
“a key aspect… the use and development of deductive reasoning in geometric contexts”, but also 
acknowledges linkage  to “accurate drawing, construction and loci”, and to “work on measures and 
mensuration” (p. 16). Particular attention is drawn to the way in which “ICT offers good 
opportunities to develop geometrical reasoning and an appreciation of shape and space” (p. 16), 
with Logo and dynamic geometry software singled out for mention. Relationships between 
geometry and algebra are not emphasised, although mention is made of how “the use of formulae 
[in mensuration] can be linked to work in algebra, and can be enhanced by the use of spreadsheets 
and graphical calculators” (p. 17). In respect of linkage between algebra and geometry, then, the 
published rationale for the Framework does not fully anticipate the character of progression to 
post-16 study of mathematics. In addition, as will be explained more fully in due course, neither 
Framework nor National Curriculum acknowledge the distinctive expertise -and so learning- 
required to make effective use of computational tools for mathematical purposes.  

1.2.3  Current use of computer-based tools and resources 
A further important issue is the current situation of ICT use in secondary mathematics departments. 
Reporting on the general state of mathematics at secondary level, OfStEd (2002a: p. 2) judges that 
“use of ICT still requires improvement in many schools”, and indicates that the problems are not 
simply ones of access to equipment. Even in schools where resources are available, “only a 
minority of the mathematics teachers have the expertise and confidence to use them with pupils, 
despite recent training initiatives”; and, even with trained teachers, “work with computers is often 
restricted to occasional topics as part of the scheme of work in one or two year groups”. Moreover, 
OfStEd (2002b: p.9) suggests that use of ICT is rarely integrated into schemes of work and lesson 
plans: “Too often, teachers’ planning and schemes of work lack any reference to specific ICT 
applications, and pupils have difficulty recalling when they have used ICT in mathematics”. 
Looking specifically at the effect on secondary mathematics of government initiatives promoting 
ICT in schools, OfStEd (2002c) reports that “most mathematics departments do not have ICT as a 
priority” with “recruiting difficulties, staff changes and the Key Stage 3 Strategy… generally seen 
as higher priorities” (§18). Consequently, the inspectors judge that “in only about one in three of 
departments is ICT mentioned in subject development plans, despite the current initiatives such as 
NOF-funded training and NGfL”, while “in nearly half, the leadership lacks a clear vision about 
how the use of ICT might develop and there are few strategies for monitoring and evaluating ICT 
work in the department” (§18). The report characterises the more established uses of ICT in the 
following terms: “graphic calculators are used to explore relationships between functions and 
graphs; graph-plotting software is used to link co-ordinates and shapes; low attainers are motivated 
in consolidating angle ideas [through drill games]; and spreadsheets are used for algebraic 
modelling” (§6). The inspectors’ observations of limited ICT use are corroborated by the findings 
of the Impact2 study (Harrison et al., 2002: p. 21) which found 67% of Key Stage 3 pupils and 82% 
of Key Stage 4 pupils reporting that they never or hardly ever used ICT in mathematics lessons. 
Particularly significantly for this study, OfStEd (2002c: §32) reports that “very little use is 
currently made of the powerful dynamic geometry or algebra software available”, and this same 
phrase recurs in OfStEd’s most recent report (2002b: p. 9). It seems that advocacy of the use of 
such software in reports from joint working groups of the Royal Society/Joint Mathematical 
Council on the teaching and learning of algebra (RS/JMC, 1997) and of geometry (RS/JMC, 2001) 
has not been translated into support for curriculum revision and professional development. 
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1.3 Design of the study 

1.3.1 Rationale for the study 
These observations suggest that there is scope for increased attention in the English secondary 
mathematics curriculum to theorised analysis of mathematical situations following informal 
exploration of them; and to symbolisation of mathematical relationships as well as exploration of 
data patterns. This report will show that DGS have considerable potential to support such 
enhancement of the curriculum.  

1.3.2 Available technical and didactical resources 
Several DGS are currently available, but those most widely discussed in education are Cabri 
Geometry1  and the Geometer’s Sketchpad (GSP)2. Resources for the educational use of these DGS 
in teaching and learning geometry have been developed over the years; for Cabri, primarily in 
France, and for GSP, primarily in the United States, although there have been some pioneering 
British examples. A useful overview is provided by the Autumn 2002 issue of the journal 
Micromath (published by the Association of Teachers of Mathematics) which is devoted to such 
resources (including those developed by a working group of the association) and is accompanied by 
a CD-ROM of relevant material. Similar material can also be found in the manuals and 
demonstration files accompanying both packages, and on the websites of their publishers. 
An important interest of this study is in the potential of a relatively recent enhancement of DGS 
which has added a graph plotting capability. While both the main DGS incorporate this capability 
to some degree, an upgraded version of Cabri Geometry is due for release which may match the 
additional facilities for graphing currently provided by Geometer’s Sketchpad. Under these current 
circumstances, then, GSP will be used to exemplify DGS in this document.  
An internet search was conducted with the aim of identifying material illuminating the potential 
contribution of DGS in teaching and learning algebra. Currently, the few relevant resources 
available are to be found primarily in the material accompanying GSP and on its website. These 
resources refer to standard graph plotting activities, notably investigations of the effects of 
changing parameters in function expressions. Other ideas include the use of algebra tiles to provide 
a visual model for algebraic factorisation, and the graphing of relationships between geometrical 
measures. Reference will be made to all of these in due course. Another source is the text on 
Teaching Mathematics with ICT by Oldknow & Taylor (2000: pp. 89-90) which has a short section 
on algebraic modelling with dynamic geometry, as does the recent publication on ICT and 
Mathematics produced for the Teacher Training Agency by a working group of the Mathematical 
Association chaired by Adrian Oldknow (TTA/MA, 2002: pp. 43-44). 

1.3.3 Phase 1: Developing and organising didactical resources and concepts 
Having searched widely (particularly in Britain, America, France and Singapore) for relevant 
resources, it became clear that the use of DGS in relation to algebra and its links to geometry was 
still in the early stages of development. Consequently, rather than being able to collect and analyse 
already developed resources in the first phase of the study, it became necessary to devise ways in 
                                                
1 An introductory description is available at http://www.chartwellyorke.com/cabri.html, a restricted demonstration 
version at http://www.cabri.com/en/downloads/, and further information at http://www-cabri.imag.fr/index-e.html. 
2 An introductory description is available at http://www.dynamicgeometry.co.uk/, a restricted demonstration version at  
http://www.keypress.com/sketchpad/sketchdemo.html, and further information at http://www.keypress.com/sketchpad/. 
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which existing ideas for use of DGS could be given an algebraic dimension, and algebraic ideas 
could be expressed through DGS tools. Hence this final report documents a range of mathematical 
ideas drawing primarily on my own work in progress (Ruthven, in preparation), which may prove 
to have educational value once they have been more fully developed didactically. 

1.3.4 Phase 2: Exploring school conditions for trialling and refinement of material 
The second phase of the study explored the possibilities of working with teachers and pupils to 
develop the first phase material more fully into viable and valuable teaching and learning activities. 
Once the interim report on the first phase was approved in mid January 2003, it was used as the 
basis for canvassing further participation by teachers, schools and local authorities known to have 
some GSP capacity. A number of contacts had been established by early February, but none of 
these felt able to undertake trialling within the tight timetable imposed by the requirement that 
work should be completed by early March 2003. Few schools had the software, and even fewer 
mathematics departments were making active use of it. Feedback from many contacts indicated a 
need to train staff in the use of GSP before undertaking work of this type. Departments also had 
commitments to an established scheme of work, and difficulties in gaining timetabled access to 
school computer rooms at relatively short notice. All these considerations reflect the realities of the 
current state of –and constraints on- use of ICT in secondary mathematics as portrayed by OfStEd. 
These considerations also resonate with my past experience of development activities of this type. 
The best example is a project conducted for the National Council for Educational Technology 
between 1988 and 1991, concerned with integration of graphic calculators into advanced 
mathematics courses (where, analogously, there was no tradition and little experience of use at that 
time). This project commenced with a programme of staff training and advance planning over the 
course of a summer term, in anticipation of trialling over the ensuing school-year with specific 
project classes. This process of training, planning and trialling continued over the full two-year 
cycle of the advanced level course, providing the basis for subsequent production of a professional 
development pack (Ruthven, 1992). In my view, developing a viable model for the integration of 
dynamic geometry systems into the secondary mathematics curriculum requires extended activity 
of this type, in view of the significant changes it implies in schemes of work, and the considerable 
demands on teachers. I would encourage QCA and/or DfES and/or BECTA to consider supporting 
a further project of this type. 

1.4 Presentation of material 
Throughout this document –designed to read on printed page as well as computer screen- 
screensnaps have been used to convey a sense of the activities under discussion. Clearly, the static 
–and possibly monochrome- images cannot fully convey the sense of working with dynamic –and 
often colour-coded- images. A folder of the relevant GSP worksheets accompanies this report, so 
that the reader can gain this important sense3.  

                                                
3 The folder of worksheet files needs to be unzipped before use. It may prove necessary to open the worksheets from 
within GSP (using the option on the File menu). An evaluation copy of GSP can be downloaded from 
http://www.keypress.com/sketchpad/sketchdemo.html. 
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2 Working with dynamic geometry software 
2.1 Basic features of the software 
Dynamic geometry software is best known as a means of constructing and manipulating dynamic 
representations of geometrical objects in the plane. It provides tools supporting classical, 
transformational and coordinate methods of construction. Rather than creating a single static 
example of a generic geometrical object, the software makes it possible to create a dynamic 
construction which retains its defined characteristics but changes its visible form on the computer 
screen under manipulation. Such manipulation is applied to one or more defining elements by 
dragging with the computer mouse, directing with the keyboard arrows, or animating with the 
motion controller built into the software, allowing the displayed figure to range across cases. This 
can provide visual evidence -on the one hand- of any properties of the construction which are 
invariant across cases, and –on the other- of the locus of any variant element of the construction as 
another element is dragged. 

2.1.1 Classical constructions 
In GSP, basic tools for classical constructions can be selected from a Toolbox palette and used to 
construct points, circles or lines on the worksheet through direct use of the computer mouse. 
Constructions can also be made by preselecting defining elements already on the worksheet, and 
then applying an appropriate operation chosen from the Construct menu (Figure 2.1.1). This menu 
incorporates not only the recognised primary constructions with straight edge and compass, but 
standard secondary constructions -such as the midpoint of a preselected segment, or the line 
through a preselected point, running perpendicular or parallel to a preselected line4. 

  
Figures 2.1.1-2: The Construct and Transform menus of GSP. 

 
                                                
4 In particular, all straight-edge-and-compass constructions specified in the Framework are available as direct 
operations. These secondary constructions can, of course, be reconstructed from the more limited set of primary ones, if 
desired in order to highlight underlying relationships.  
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2.1.2 Transformational constructions 
Transformational constructions are carried out through applying the operations available on the 
Transform menu (Figure 2.1.2). First, preselected elements in the workbook are marked as the 
centre, mirror or other defining object for a transformation; then, the images of preselected 
elements are constructed in accordance with the chosen transformation. The standard 
transformations provided in the menu are translation, rotation, reflection and dilatation. The last of 
these permits independent specification of horizontal and vertical scale factors, in effect also 
providing for enlargement and stretch operations5.  

2.1.3 Coordinate constructions 
The Graph menu (Figure 2.1.3) starts with operations which make it possible to define a coordinate 
system on the worksheet, and select its format. The grid may be square (identical scaling on 
horizontal and vertical axes), rectangular (distinct scaling on these axes), or polar. The positioning 
of the axes can be modified by dragging them or the point defining the origin. Likewise, the scaling 
of axes can be modified by dragging the point defining the unit, or other key values displayed on an 
axis. A grid to guide the eye can be displayed or hidden. A menu operation enables specified points 
to be plotted, permitting constructions based on coordinates. 

  
Figures 2.1.3-4: The Graph menu of GSP. 

2.1.4 Function graphing 
The Graph menu also includes operations enabling functions (of the forms y=f(x), x=f(y), r=f(θ) 
and θ=f(r)) to be defined, plotted and edited (Figure 2.1.4). A definition can incorporate parameters, 
enabling a variable member of a class of functions to be defined. These parameters can be varied 
dynamically according to prior specifications, through use of screen sliders, arrow keys or 
animation commands. 

                                                
5 Hence, all the transformations explicitly required by the National Curriculum are provided. In addition, the stretch 
transformation is available, which –although not explicitly required- plays an important part in formalising 
understanding of the scaling of coordinate axes. 
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2.1.5 Mensuration and calculation 
The Measure menu (Figure 2.1.5) contains operations to measure elements of worksheet figures – 
notably lengths, areas and angles– and to carry out further calculations. Such measures and results 
can then be used in defining further elements and operations. The Measure menu (Figure 2.1.6) 
also contains operations to measure elements of worksheet figures in terms of their position relative 
to the coordinate axes. There are operations which return not just the coordinates of individual 
points and coordinate distances between points, but the coordinate equations of lines and circles. 

  
Figures 2.1.5-6: The Measure menu of GSP. 

2.1.6 Limitations of the software 
As with other similar software, the positioning of points, lines and curves on a computer screen 
involves a degree of approximation, producing pixellated images to which the user must become 
accustomed, and which may be deceptive at times. In particular, visual evidence suggesting the 
coincidence or non-coincidence of elements cannot be trusted.  
Equally, while it is possible to specify the degree of rounding with which measures are displayed, 
this rarely coincides exactly with the screen representation of objects. In particular, even when an 
element is dragged stepwise under the control of the arrow keys,  measures are liable either to 
increase in steps larger than the smallest implied by the rounding specification so that key values 
are missed –e.g. 1.96, 1.98, 2.01, 2.03- or in smaller steps so that successive positions show the 
same measure –e.g. 2.0, 2.0, 2.0, 2.0. The consequence can be sufficient imprecision in 
measurement -and consequent manipulation- of objects to produce apparently incorrect results –e.g. 
2.0 + 2.0 may be returned variously as 3.9, 4.0 or 4.1.  
Finally, the terms in which coordinate equations can be expressed are restricted. The Equation 
operation in the Measure menu returns equations of (non-vertical) lines in a numeric y = mx + c 
form (and of vertical lines in a numeric x = c form); and equations of circles in a numeric (x - a)2 + 
(y - b)2 = r2 form. As noted earlier, the New Function command on the Graph menu permits the 
construction of functions in both y=f(x) and x=f(y) formats. For purposes of coordinate geometry, 
however, the important ax + by + c = 0 form is not available. This also limits the way in which 
simultaneous equations can be treated within the system. 
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2.2 Instrumenting mathematical activity 
All mathematical activity depends on the use of tool systems. First, there are semiotic systems, 
such as those of classical or coordinate geometry, through which material drawings take on the 
character of mathematical figures. Then there are related technical artefacts, such as straight-edge 
and compasses, ruler, protractor and setsquare, or squared paper, which assist the construction and 
interpretation of material drawings as mathematical figures. Mathematical thinking is mediated by 
such tools. For example, the task of constructing a square is very different on squared paper from 
on blank paper. Equally, in the latter case, the task differs depending on whether straight edge and 
compasses, or ruler and set-square, are to be used. Moreover, there are important contrasts between 
the aspects of squareness associated with use of these different tool systems. Thus learning to use 
tools, and to coordinate the use of different tools for cognate purposes, has always formed an 
important component of a mathematical education. 
It is important to consider the use of DGS in this light. This is true even where pupils and teachers 
use prepared templates which make no call for them to devise and produce constructions. To take 
the example of the square, Figure 2.2.1 presents a DGS screen on which three geometric figures –
identical in appearance apart from their colour- are displayed. In a type of controlled experiment, 
the point A in each figure has been selected, and the arrow keys used to drag these points 
simultaneously in an identical manner, yielding the results illustrated by Figure 2.2.2. A similar 
controlled experiment has been carried out in relation to the points C as shown in Figure 2.2.3. This 
demonstrates that the properties of a mathematical configuration cannot be inferred from a single 
presentation of its DGS construction; what dragging reveals is that the configuration to the left is 
only coincidentally square in its opening presentation; and while dragging the other two 
configurations confirms the invariance of their squareness, that squareness has a different character, 
so that the same dragging action produces contrasting results.  

  
Figures 2.2.1-2: Controlled dragging of apparently identical screen presentations           

reveals different underlying configurations. 
Revealing the hidden construction lines for the configurations, shown in Figure 2.2.4, provides 
clues as to their differing behaviour. But reading and interpreting these clues involves much the 
same knowledge as devising the constructions themselves. DGS, then, provide no means of 
transcending the distinction between material drawing and mathematical figure; but they do 
constitute a powerful tool means for making that distinction –at the heart of many pupils’ 
difficulties with geometrical argument– more explicit. In practice, then, any effective integration of 
DGS into mathematical activity in general (and that involved in the learning of mathematics in 
particular) must give sufficient attention to the ideas behind the construction of mathematical 
configurations to make their presentation as material drawings interpretable. 
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Figures 2.2.3-4: Further variation in the presentation of  different configurations,               

and their construction lines revealed. 
Here, it is important to recognise that DGS constructions are not identical to constructions with 
more conventional paper-and-pencil tools, just as constructions differ according to the conventional 
tool system used. In particular, then, a DGS is not something which can just be used by virtue of 
having mastered conventional tools of geometrical construction. There are, of course, many 
features in common; but there are also fundamental differences in operation which the expert user –
to whom they have become transparent- is likely to gloss over. For example, there is an important 
difference in the degree to which the defining elements of mathematical objects are, and must be, 
made explicit. A line constructed in a DGS worksheet is explicitly defined by two points, whereas 
this is not necessarily so for a paper-and-pencil line drawn with a straight edge. Similarly, the 
various ways of constructing a circle within DGS all involve the centre being explicitly recognised 
as a point of the system. Likewise, to be used as the basis for investigation or construction, the 
intersection of two lines must be explicitly constructed in a DGS worksheet; and to draw a line 
parallel to another, a further point defining that new line must be made explicit.  Anything beyond 
the most trivial construction, then, involves a higher degree of formal explicitness with a DGS than 
is necessary –and often customary– with pencil-and-paper. This introduces a degree of 
mathematical discipline into the use of a DGS, which is potentially educationally beneficial.  
At the same time, however,  this points to the need for a systematic development of pupils’ 
capacities to ‘instrumentalise’ the DGS as a tool for mathematical activity, and to ‘instrument’ 
mathematical actions through use of the tool. These important issues have been most fully analysed 
in relation to the use of graph plotting and symbolic algebra tools (Artigue, 2002; Ruthven, 2002), 
and to some degree in relation to DGS (Laborde, 1993). They remain largely unrecognised in 
professional policy and practice regarding the integration of ICT into school mathematics. Taking 
the Framework as an example, the need to master conventional technical artefacts, such as ruler, 
protractor or compasses, have been recognised, and increasingly the distinctive qualities of using an 
arithmetic calculator. But although there is extensive reference to the use of graph plotting devices 
and dynamic geometry systems, there is not yet sufficient recognition of the importance of pupils 
developing the specific expertise needed to use these tools effectively: regarding, for example, the 
scaling of graphs in relation to graph plotting. 
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2.3 Mediating mathematical activity 

 
Figure 2.3.1: Suggested use of dynamic geometry software in Framework (p. 195)  

The task shown in Figure 2.3.1 is drawn from the Framework (p. 195), where it is placed at Y9 
level. The important question to ask is what value using dynamic geometry software can add to this 
task which –other things being equal- could also be carried out by manipulating pointer or pencil in 
relation to a circle inscribed or placed on a classroom board or overhead projector. My argument is 
that a dynamic geometry system provides tools which assist the progressive appropriation of the 
initially informal actions and relations involved in the task to a disciplined framework of 
geometrical reasoning. As Laborde (1993: p. 53) argues: 

When asked to draw the tangent to a circle… students, by successive trials with a straight 
edge, draw a line touching the circle… but… the [mathematical] problem is not the 
production of the drawing of the tangent line but the determination of the point of tangency 
by means of geometrical relations. 

Figures 2.3.2.1-10 show a sequence of screensnaps which trace the evolution of an investigation of 
the line-circle relation, leading into its theorisation. Figure 2.3.2.1 shows the initial construction of 
line and circle. Figure 2.3.2.2 emphasises the four degrees of freedom in this construction: provided 
by the two points defining the line, and the two points defining the circle, at centre and on 
circumference (all of which have been dragged). In pursuing an investigation, however, it is useful 
to be able to reduce the number of degrees of freedom. In this case, by regarding the circle as fixed 
(ruling out dragging it, or the points defining it, at least for the present), two degrees of freedom 
can be removed. Equally, by dragging the line as a whole (including both its defining points, rather 
than dragging one of these points individually) it moves parallel to its initial position, reducing the 
situation to be investigated to a single degree of freedom. Clarifying what is to regarded as fixed, at 
least for the present, and what is to be varied, and ascertaining how to achieve this with a dynamic 
figure, is a key step in systematising an investigation. 
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Figures 2.3.2.1-8: Investigation of the line-circle relation 
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Figure 2.3.2.3 shows a generic situation of the line cutting the circle. The points A and B have been 
constructed as the intersections between line and circle, then the segment joining them (with a 
display showing its length, to provide a helpful heuristic).  As the line is dragged leftwards, A and 
B move closer (Figure 2.3.2.4) until both points (and the display of the distance between them) 
disappear (Figure 2.3.2.5). However, on the screen it is by no means clear that the line is no longer 
cutting the circle. Moreover, nothing displayed on screen during the course of the dragging 
establishes that there is a position where the line touches the circle at a single point, rather than 
cutting it at the two defined points. The viewer may make ‘the touching hypothesis’, but there is 
actually no visual evidence to support it.  
To progress, then, it is necessary to go beyond the given construction. From considerations of 
symmetry, if there were to be a ‘touching’ point, then the ‘average’ of A and B would approach it 
as the line came closer and closer to the touching position. In Figure 2.3.2.6, this loose idea of 
‘average’ is formalised in geometric terms as the midpoint M of segment AB, and the 
corresponding construction effected. In Figure 2.3.2.7, the line has been dragged from side to side, 
tracing the locus of M. This locus appears to be a straight line, and it appears to pass through the 
centre of the circle. But this figure might be some special case, or visually deceptive. To test these 
hypotheses empirically, the whole figure needs to be varied in terms of the four degrees of freedom 
identified at the start. Dragging the figure correspondingly (Figure 2.3.2.8) suggests that these 
apparent relationships are independent of the particular line and circle chosen for investigation. 
To prove these hypotheses, however, it is necessary to theorise the situation further. Consider the 
particular position at which the line, and hence its segment AB, both pass through O (Figure 
2.3.2.9). In this position of the line, O lies on the segment AB. Since OA and OB are both radii,  O 
is equidistant from A and B. So O and M coincide. Hence, the locus of M does indeed pass through 
O. Consider next the more generic situation (Figure 2.3.2.10) in which the triangles OMA and 
OMB have been constructed. Again OA is equal in length to OB since both are radii. Likewise, 
MA is equal in length to MB, since M is the midpoint of AB. And finally, the triangles share the 
side OM. Hence, the two triangles are congruent. In particular, the angles OMA and OMB must be 
equal. And since these equal angles together form the straight angle AMB, they must both be right 
angles. This demonstrates that OM is perpendicular to the line defining A and B. 
What this analysis establishes is a further property of M, that relates it directly to the two objects 
defining the figure –the moving line and the circle. M lies at the foot of the perpendicular from the 
centre of the circle to the moving line. In Figure 2.3.2.11, the extended perpendicular, and its 
intersections with the circle, P and P’, have been constructed (and the segments used in the 
preceding analysis removed for greater clarity); as the line is dragged across the circle (holding it 
parallel –of course- to its original position), M moves along the perpendicular, between P and P’. 
Although, the visual evidence remains inadequate, it is now possible to argue theoretically, as 
follows, that the moving line touches the circle at the point P (and at the point P’). The line is 
shown approaching P in Figure 2.3.2.12. As the line is dragged through P, it is M which coincides 
with P (by virtue of the way in which they have been specified). In this position, since OP is a 
radius of the circle, so too is OM, as are OA and OB. Referring back to the triangles in Figure 
2.3.2.10, this implies that the angles between OA or OB and OM are of size 0. Thus A and B also 
coincide with M when it takes position P. This is what it means for the line to touch the circle. 
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Figures 2.3.2.9-12: Theorisation of the line-circle relation 

As the Framework recognises, such a full elaboration of the task as the one sketched here will not 
be accessible to all Y9 pupils: “More able pupils may be able to prove their conjectures 
analytically, but the formal use of congruent triangles is needed, and for most pupils this will be 
tackled in Key Stage 4” (p. 17). Nevertheless, this example illustrates how, in moving from 
investigation to theorisation, the mediation of a task by dynamic geometric software serves to 
introduce forms of geometrical discipline to the enquiry beyond those provided by the alternative 
means mentioned at the start of this section.  
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3 Visual models of algebraic relationships 
Apart from those relating to use of its graphing facilities, the main algebraic materials 
accompanying GSP concern visual models of algebraic relationships.  

3.1 Advanced algebra tiles 
One of the standard templates accompanying GSP provides tools for using algebra tiles to model 
the products of two binomial expressions, through a concrete analogue of grid multiplication. The 
example shown in Figure 3.1.1 (reproduced from the corresponding proprietary GSP file) illustrates 
the use of (advanced) algebra tiles to model the identity between the product of the expressions 1 - 
2x and x - 2 and the expression 2x2 + 5x – 2. Tiles -as shown in the key at the bottom right of the 
screen- are used to represent basic expressions. The sliders at the left of the screen allow the values 
of the variable(s) defining (the corresponding dimension of) these tiles to be varied dynamically. 
Because the width of the unit and x tiles is fixed at 1, the numeric values of their lengths and areas 
coincide; this allows them to ‘represent’ terms in either the binomial factor –by length- or the 
product –by area. The tiles for terms (including any preceding sign) which take a positive value for 
the current setting of the variable(s) are uniformly coloured, whereas those that take a negative 
value are diagonally quartered. Tiles are laid out to form the product as shown in the example in the 
top centre of the screen. The expressions to be multiplied are placed along the margins of the grid, 
and the product is modelled within the grid.  

 
Figure 3.1.1: An algebra tile configuration modelling the product of 1 - 2x and x - 2. 

Responsibility for the way in which the tools are employed resides with the user(s). Thus they can 
also be employed to construct unorthodox and erroneous models. 
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3.2 Trigonometric function generators 
Another standard template accompanying GSP provides an animated illustration of the sense in 
which the trigonometric functions are also termed ‘circular’. Shown in Figure 3.2.1 (generated by 
using the corresponding proprietary GSP file), this animation demonstrates how the varying heights 
of two points (a quarter turn apart) on a rotating wheel generate  sine and cosine graphs . 

 
Figure 3.2.1: A trigonometric function generator. 
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3.3 Dynamic number lines 
The algebraic idea of letter as variable can be represented in another way in GSP, through 
construction of a dynamic number line (Ruthven, forthcoming). This is a number line on which an 
independent variable and its  dependent variables are plotted; as the point representing the 
independent variable is dragged along the line, the points representing the dependent variables 
move accordingly 6.  

 
Figure 3.2.1: Screensnap of a dynamic number line showing an  

independent variable n and dependent variables  n-2, 2n, n2, n/2 and 2/n. 
In the example shown in Figure 3.2.1, the independent variable is n, and the dependent variables 
are n-2, 2n, n2, n/2 and 2/n respectively7. (For those reading this in monochrome, the points are 
colour-coded as well as labelled on the computer screen, to assist discrimination between them). As 
presented here, the value of a variable is shown in two ways –as a position on the number line, and 
as an associated decimal number8). As the independent variable n is dragged along the number line, 
the dependent variables move correspondingly. From the starting position shown, as n increases –
moves to the right9- all other variables do likewise with the exception of 2/n which decreases –
moves to the left. Likewise, as n decreases, so initially do all the other variables except 2/n. 
However, as n passes through 0, the direction of movement of n2 reverses; it seems to ‘bounce off’ 
the 0 position; in addition, n2 ‘overtakes’ n as they pass together through 1. Similarly, as n/2, n, and 
2n pass through 0, their relative positions reverse; and these three variables move along the number 
line at different, but clearly related, ‘speeds’. By contrast, n-2 never exchanges position with n; 
rather, both move at identical ‘speed’, and maintain a fixed ‘distance’. Equally, important insights 

                                                
6 In GSP, a dynamic number line can be constructed from the x-axis of a co-ordinate system (with grid and y-axis 
hidden). The variable ‘driving’ the model –in this case n- is constructed as a point (free to be dragged) on the axis, with 
its label edited to display the appropriate variable name. Other variables are then defined by calculation from n, and 
their positions on the number line plotted. The number line can be recentred and rescaled by the usual GSP means of 
dragging the line and its markers. 
7 This example is a more open version of a task proposed for Y9 students in the Framework for Teaching Mathematics 
(p. 9) under the head Applying mathematics and solving problems. 
8 There may be good practical and didactical reasons for hiding the decimal displays showing the values of variables. 
Practically, the problems of representing a continuous variable in the discrete medium of a pixellated screen are well 
known, and not peculiar to this situation; in particular, depending on the number –high or low- of significant figures 
chosen for the decimal display of a variable, the display may either ‘skip’ values –notably important values marked on 
the number line- or may ‘stick’ for some time at the same value –even though the point is moving on the number line. 
Didactically, hiding these values requires students to attend to the spatial positioning of points on the number line –as 
the only source of information about the variables. Equally, reading or estimating values using the visual scale is 
important in instrumentalising the number line.  Initially, however, the provision of information about variables in both 
numeric and graphic form is likely to be important in helping students establish a basic concept of variable. 
9 To the expert it may seem redundant to write ‘as as n increases –moves to the right-‘ but I do this to emphasise that 
one of the things that students are learning is precisely this extension to variables of the mathematical conventions 
surrounding the number line. 
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can be gained by focusing on instantaneous relationships between the values of variables; for 
example, n and 2/n coincide just as n2 passes through 2 (as shown in Figure 3.2.2).  

 
Figure 3.2.2: Screensnap of a dynamic number line showing an  
instantaneous relationship between the values of n, 2/n and n2. 

This dynamic representation of changing variables can serve, then, to highlight important 
mathematical phenomena calling for investigation and explanation, and to activate important 
supporting metaphors. And the ideas involved are precisely those underpinning fundamental issues 
including the solution of inequations such as n2 > n, the non-solvability of equations such as n = n-
2, and the relative rates of change of independent and dependent variables. 

Nevertheless, why introduce dynamic number lines to represent variables when it would be both 
more practically convenient and more mathematically conventional to employ dynamic coordinate 
graphs? The key advantage of the dynamic number line is that it facilitates comparison of 
independent variable and dependent variable, because these are represented on the same line (so 
that positions and movements are directly comparable)10; this provides a quite different –and more 
primitive- sense of the covariation of independent and dependent variable than that available on a 
dynamic coordinate graph. Semiotically, the dynamic coordinate graph provides a more complex 
representation, with the independent variable scaled on one number line, dependent variable(s) on 
another orthogonal number line, and their values represented by the position of a point on a third 
line or curve forming the graph. The key advantage of the dynamic coordinate graph is that it holds 
information about a range of joint values of independent and dependent variables, not just their 
instantaneous state. Hence, the dynamic number line is more than just a simple precursor to the 
dynamic coordinate graph11; each representation facilitates attention to particular aspects of 
covariation.  
 

                                                
10The earlier example –following the approach of the source task- incorporated an unusually large number of dependent 
variables: n-2, 2n, n2, n/2 and 2/n. In practice, of course, it might prove advisable to work with rather fewer dependent 
variables on a single number line. 
11 And, of course, the transition from dynamic number line to dynamic coordinate graph can be assisted by initially 
showing values of the independent and dependent variables not only on the graph, but on their respective axes. 
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4 Covariation of measures in geometrical figures 
This section illustrates the possibilities of analysing the covariation of measures in geometrical 
figures, including expressing and analysing such covariation in algebraic terms. 

4.1  Varying the radius of a circle bounded by hexagons 
This example illustrates the basic idea of co-varying measures. A circle is constructed, and then 
two regular hexagons; an ‘inner’ hexagon with vertices on the circle, and an ‘outer’ hexagon with 
edges touching the circle (as shown in Figure 4.1.1). Similar constructions are, of course, possible 
with other polygons. Variation –in the form of a simple scaling operation- is introduced by 
dragging the point defining the radius of the circle. This illustrates the invariance of the visual 
nesting of ‘inner’ hexagon within circle within ‘outer’ hexagon. This nesting is also reflected in the 
numeric ordering of measures of perimeter/circumference (as shown in Figure 4.1.1) and area (as 
shown in Figure 4.1.2). Even where pupils, have already grasped these relationships, this simple 
situation can serve to illustrate the idea of co-variation of measures.   

 
Figure 4.1.1: Investigating covariation of perimeter/circumference with radius measures. 

The covariation of any two measures can be shown by plotting them as a co-ordinate pair. 
Dragging the radius in the geometrical figure results in the plotted point moving accordingly. This 
movement can be traced, showing how ‘inner’ perimeter, circumference and ‘outer’ perimeter co-
vary with radius (Figure 4.1.1), as likewise do the three area measures (Figure 4.1.2).  
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Figure 4.1.2: Investigating covariation of area with radius measures. 

The most intuitively available form of covariation is between an independent measure –in this case 
the radius measure- and dependent measures –in this case the circumference/perimeter and area 
measures. There is, of course, another less immediately evident form of co-variation open to 
investigation and analysis: between the different dependent measures.  
The traces may themselves suggest algebraic relationships between the variables. These can be 
tested by superimposing a plot of the conjectured relationship. Equally, given the requisite 
geometrical knowledge (notably of the properties of set-square triangles), formulae can be deduced 
for the perimeters and areas of ‘inner’ and ‘outer’ hexagons and squares in terms of the radius of 
the circle.  
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4.2 Covariation in a folded sheet of paper 
This example illustrates how a dynamic geometry figure can support various forms of geometric, 
algebraic and trigonometric reasoning. 
The basic construction shows the outline of a sheet of paper folded over so that one of its vertices 
touches the opposite edge, with the paper flattened to form a crease. In the basic construction 
(Figure 4.2.6), this vertex P can be dragged so that the endpoints of the crease remain within the 
boundaries defined by the edges AB and BC. The dimensions of the sheet of paper can also be 
altered by dragging C and D, introducing further generality to the situation. 

 
Figure 4.2.1: The basic folded paper construction. 

A first geometric task is to establish the constraints on the movement of P on AB. Essentially, this 
involves identifying and analysing the extreme positions available for P on AB. In practice, the 
software may not be capable of displaying the extreme positions themselves, providing an incentive 
to analyse the situation geometrically (as shown in Figures 4.2.2-3).    

 
Figure 4.2.2-3: Approaching the extreme positions of the vertex P. 

A second task focuses on angle relationships. With the measures of two angles displayed (as in 
Figure 4.4.4), the task is to identify and analyse any consistent relationship between them as P is 
dragged. This depends on using standard angle properties (notably those of complementary, 
supplementary and vertically opposite angles, and angles in a triangle) and can be developed into a 
systematic relationship expressed in algebraic terms. An extended task is then to conduct a 
complete analysis of angle relationships in the figure, so determining the minimum number of 
angle measures needed to deduce all others, and thus the minimum number of letters needed to 
express all angle measure variables. A similar task focuses on identifying systematic relationships 



 25 

between lengths within the figure and expressing them algebraically (with supporting mensuration 
as shown in Figure 4.2.5). 

 
Figure 4.2.4-5: Basic displays for exploration and analysis of angle and length relationships . 

Finally, for pupils familiar with the trigonometry of right-angled triangles, a fuller analysis relating 
angle and length measures is possible. One approach is to first pose the task of deducing as many 
other measures as possible from the information shown for the specific case in Figure 4.2.6. The 
methods adopted can then inform the development of generally applicable formulae which can be 
tested in a range of cases produced by dragging not just P, but C and D. 

 
Figure 4.2.6: Basic display for full analysis of measure relationships. 
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 5 Classical, transformational and co-ordinate approaches to locus 
This section illustrates the possibilities of developing –and comparing- parallel analyses of locus 
problems in classical, transformational and co-ordinate terms –with the last linked to algebraic 
methods. 

5.1  The midpoint of a constrained position vector 
The type of problem situation considered in this subsection concerns the locus formed by midpoint 
of a line segment connecting a fixed point (in effect, an origin) to a point moving round the 
perimeter of a shape. Here, the example of a square is used, but any polygon would serve, as would 
a circle (while offering variation in some features of the ensuing analysis).  

  
Figures 5.1-2: Locus formed by the midpoint, M, of a line segment connecting 

a fixed point, O,  to a point, P, moving round the perimeter of a square. 
As the point P moves (as animated in Figures 5.1-2), so does the midpoint M (as shown by its 
trace) in what appears to be a smaller version of the square. Dragging the defining objects –the 
point O and the square ABCD- indicates that the locus consistently appears to take such a form (as 
shown in Figure 5.1.3). The form can be analysed through classical geometrical methods by 
considering any edge of the square, and constructing the triangles formed by the line segment in its 
‘variable’ position OP, and its ‘extreme’ positions OA and OB (as shown in Figure 5.1.4). The 
straightness –and half-size- of A'MB' can be proved through analysis of similar triangles. 

  
Figures 5.1.3-4: Dragging defining elements of the locus,  and analysing it in classical terms. 
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In this light (and rather more directly) the relationship between the square on which P is moving 
and the shape formed by M can be conceived in transformational terms as a dilatation centred on O, 
with scale factor identical to the (given) ratio between the lengths of OP and OM (as shown in 
Figures 5.1.5 –before- and 5.1.6 -after).  

  
Figures 5.1.5-6: Analysing the locus in transformational terms as a dilatation of the square. 

Finally, the problem can be treated in co-ordinate terms. The fixed point is placed at the origin, and 
each of the edges of the square satisfies a co-ordinate equation for the corresponding straight line. 
The square may be positioned so that these equations are simpler in form (as shown in Figures 
5.1.7 and  5.1.8) or more complex (as shown in Figure 5.1.9). In either case, the relationship 
between the equations of edges in the original square and its image can be examined.  

  
Figures 5.1.7-8: Investigating the locus in co-ordinate terms. 

Such an investigation points to a co-ordinate analysis of the relation. Although this should –at least 
initially- be conducted in relation to specific examples, it can be developed into a general analysis 
of the following form: 
Take O as (0, 0), P as (p, q), and M as (m, n). The values of p, q, m and n vary as the points 
move. However, whatever the position of the points, the following can be said. 
Since M is the midpoint of OP,  m = p/2 and q = n/2, which is equivalent to p = 2m and q = 2n. 
If P runs along an edge satisfying equation ax + by + c = 0, then ap + bq + c = 0. 
Replacing p and q in that result by their equivalents, 2am + 2bn + c = 0.  
Consequently, am + bn + c/2 = 0. 
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Hence whatever its position, the coordinates of M satisfy the equation ax + by + c/2 = 0. 
This is the equation of a line parallel to the original edge on which P is moving, and half its 
distance from the origin. 

  
Figures 5.1.9-10: Further investigating the locus in co-ordinate terms. 

Further investigations give additional possibilities for analysis. For example, under what 
circumstances does the locus of the midpoint fall entirely within the original square (as in  Figure 
5.1.10), or completely outside (as in  Figure 5.1.9).  
This problem also lends itself to treatment in vector (co-ordinate pair) terms, using a parameter to 
express the position of P between the vertices defining an edge of the square. 
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5.2  The midpoint of a sliding ladder 
This subsection considers another midpoint problem: that of the locus of the middle rung of a 
ladder as one end slides down a wall and the other along the ground. Here, then, the segment 
concerned is of fixed length, and is constrained to move in a different way. 
A basic construction for the problem is shown in Figures 5.2.1-2. Dragging G drives the sliding 
motion of the ladder; the path of the midpoint M is traced accordingly. 

  
Figures 5.2.1-2: Basic construction for investigating the sliding ladder problem 

It appears that the locus of M is a quarter-circle, centred at O. By constructing such a curve, its fit 
to the locus can be tested visually (as shown in Figure 5.2.3). But, this remains to be proved.  

  
Figures 5.2.3-4: Testing the apparent form of the locus, and creating a classical analysis. 

A classical analysis can be developed by constructing the (variable) point (P in Figure 5.2.4)  
defined as having the same height above the ground as that end of the ladder resting against the 
wall and the same distance from the wall as that other end resting on the ground. This point is 
constructed as the intersection of the corresponding lines parallel to ground and wall. Assuming 
that the face of the wall is perpendicular to the level ground (suggesting possible variants to be 
investigated later), this creates a (variable) rectangle (OWPG in Figure 5.2.4), in which (by a 
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standard property of rectangles) the diagonal OP is of the same (fixed) length as the diagonal GW 
(which is the ladder), and these diagonals intersects at their midpoints M' and M. Consequently, the 
locus of M is identical to the locus of M'; and since O is a fixed point, and OM' of fixed length,  M' 
ranges over a quarter circle lying between the ground and the wall. In the case of any residual 
uncertainty, this analysis can be tested by dragging G and observing whether M' and M always 
coincide. By doing so, another way of viewing the problem is suggested. Not only do the two 
diagonals rise and fall together, as if they were pivoted at their midpoints, but the trajectory of the 
line OP resembles that of another identical ladder falling away from a starting position up against 
the wall. 

  
Figures 5.2.5-6: Creating transformational and co-ordinate analyses of the locus. 

This suggests an alternative transformational analysis, based on reflecting the ladder in the 
(variable) mirror line running parallel to the wall and passing through the midpoint of the ladder (as 
shown in Figure 5.2.5 by the reflection of GW to create its image G'W', both having midpoint M). 
Here, in order to establish that the locus corresponds to the quarter-circle centred on O, it is 
necessary to establish that, whatever the position of the sliding ladder GW, G' always coincides 
with O. 

Finally, the locus can be analysed in co-ordinate terms (as shown in Figure 5.2.6, where O has been 
placed at the origin, G on the x-axis, and W on the y-axis). Again, specific numerical examples are 
likely to be more accessible for pupils, but some will be able to build up to a fully general analysis, 
as follows: 
Take O as (0, 0), G as (g, 0), W as (0, w), and the size of the ladder as s. The values of g and w 
vary as the ladder slips, but s remains constant.  
However, whatever the position of the sliding ladder, the following can be said. 
Since M is the midpoint of GW, it has co-ordinates (g/2, w/2). 
Since GOW is a right-angled triangle, g2 + w2 = s2. 
Consequently g2/22+ w2/22 = s2/22, which is equivalent to (g/2)2 + (w/2)2 = (s/2)2. 
Hence, whatever its position, the co-ordinates of M satisfy the equation x2 + y2 = (s/2)2. 

This is the equation of a circle, centred at the origin, with radius half the size of the ladder. 
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6 Geometrical properties of algebraic graphs 
Access to graph plotting software has encouraged investigative teaching approaches to the study of 
families of algebraic graphs –notably linear and quadratic- based on exploring the effects on the 
graphs of varying the values of parameters within their defining equations. Although vivid, such 
effects can easily be geometrically underinterpreted or misinterpreted by pupils in the absence of 
any control or check. For example, the graphic effect of varying the parameter m in the linear 
equation y = mx can be underinterpreted simply in terms of the changing y-coordinate of the point 
(1, m), or misinterpreted as a rotation. A key potential of DGS is their capacity to introduce greater 
geometrical discipline and insight into such investigations.     

6.1  Properties of linear graphs 
One way of encouraging such discipline and insight is to construct geometric tools to support the 
analysis of function graphs. Figure 6.1.1 shows a tool for use in investigating  linear graphs. 

  
Figure 6.1.1-2: A simple tool for investigating linear graphs. 

The tool consists of a line to be manipulated so as to lie along the graph under investigation. 
Associated with this line is a segment joining the origin O to the point A (defined as the 
intersection of the line with the vertical axis); this serves to highlight the geometrical basis of 
intercept. Equally, the point B can be dragged freely, defining a pair of segments PB and AP which 
indicate the vertical and horizontal components of any section of the line; this serves to highlight 
the geometrical basis of gradient. The application of this tool to the graph of a mystery linear 
function is shown in Figure 6.1.2; by dragging the points A and B (Figures 6.1.3-4) the tool is 
positioned over the graph, identifying intercept, gradient and equation.  

   
Figures 6.1.3-4: Applying the tool to the graph of a mystery linear function. 
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Exploiting the freedom of the point B by dragging it along the function graph emphasises gradient 
as the invariant ratio of vertical to horizontal component (as shown in Figures 6.1.5-6).  

  
Figures 6.1.5-6: Freedom of movement of the gradient component of the tool. 

In effect, this tool embodies the intercept/gradient model of linear graphs, so that mastering the 
manipulation of its components involves developing schemes corresponding to this mode of formal 
mathematical analysis. Such schemes cover situations in which the intercept indicator appears to 
vanish and the constant term in the equation becomes 0.0 (Figure 6.1.7) -corresponding to an 
intercept at the origin with y-coordinate 0; or the gradient indicator collapses and the coefficient of 
the x term in the equation becomes 0.0 (Figure 6.1.8), corresponding to a horizontal graph of 
constant value with gradient 0. Equally, in a situation where the equation of the line displays an 
explicit zero coefficient, this can be compared with the counterpart functions defined by equations 
in which the corresponding term is either included or excised. 

  
Figures 6.1.7-8: Special configurations of the tool signal zero intercept or zero gradient. 

Finally, manipulating the tool to lie along one or other of the axes explores their characterisation as 
graphs of linear functions. The horizontal axis can, of course, be characterised in this way (Figure 
6.1.9), whereas the vertical axis cannot (Figure 6.1.10) –dragging A reveals that this is the unique 
line on which every point could be considered an intercept! 
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Figures 6.1.9-10: Attempted characterisation of the axes as linear function graphs. 



 34  

6.2 Properties of parabolas and quadratic graphs 
This section focuses on the use of a parabola tool in analysing quadratic graphs.  
The parabola is introduced as the locus of a moving point equidistant from a fixed focus point and a 
fixed directrix line. Dragging a defining point on the directrix produces movement of the target 
point along its locus, leaving a trace behind, eventually forming a parabola  (Figure 6.2.1-2).  

 

 
Figures 6.2.1-4: Construction and manipulation of a parabola tool. 

This construction can be adapted so that rather than the moving point being shown and traced, the 
locus is constructed directly. In effect, then, the parabola becomes an object which can be modified 
by manipulating the position of focus and directrix (Figures 6.2.3-4).  
This tool can now be extended to display the positioning of focus and directrix in coordinate terms 
(Figure 6.2.5), and applied to the analysis of graphs (Figure 6.2.6). In this example, the quadratic 
graph to be analysed will prove to be parabolic, but the tool would be equally valuable in revealing 
that a curved graph was not actually parabolic. (And, of course, similar hyperbolic, circular, elliptic 
tools and the like could be devised). The screensnaps sketch a sequence of manipulations in which 
the tool is dragged into a suitable initial position respecting apparent symmetries (Figure 6.2.7), the 
effects of dragging focus and directrix are ascertained (Figures 6.2.8-9). and the position of fit 
between parabola tool and quadratic graph is found (Figure 6.2.10). 
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Figures 6.2.5-10: Fitting a parabola tool to a quadratic graph. 

Once a good fit has been found, it can be analysed algebraically. In the example shown, the focus 
appears to be (0, 1/4) and the directrix y = -1/4. Using the locus definition of a parabola, an 
appropriate equation can be stated and transformed as follows: 
(y + 1/4)2 = (y – 1/4)2 + x2  
y2 +  (1/2)y + (1/16) = y2 – (1/2)y + (1/16) + x2   
y = x2 
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7 Transformational properties of graphs 
As illustrated in the previous section, graphs can be treated as geometric objects in their own right. 
Consequently, they are open to analysis in transformational terms, as well as classical and 
coordinate. Indeed, transformational approaches offer a powerful way of (re)framing many of the 
important properties of graphs. Again, access to graph plotting software has encouraged attention to 
such ideas, but conventional graph plotters only permit transformation of graphs to be investigated 
indirectly through inference from the effects of changing parameters in their equations. With graph 
plotting DGS, it becomes possible to treat such issues in terms of a more complete and coherent 
combined system of geometrical and algebraic operations.  

7.1 Transformation of graphed points 
Developing an intuitive sense of different types of transformation, and formalising this in terms of 
geometric and algebraic concepts can be assisted by activities in which such properties are explored 
informally and then analysed more formally. Figures 7.1.1-4 show an obvious way in which a DGS 
template can be configured to show a point and its image under an unknown transformation. Here 
the task has been framed as one of sending the image to its ‘home’ by dragging the defining point 
appropriately. The software is set to show traces of the movement of both points. A very natural 
initial strategy is to drag the defining point in the direction that takes it and/or the image towards 
‘home’; in such a case, the results are surprising (Figure 7.1.1). This encourages investigation of 
the relationship between the direction of dragging and the direction of movement of the image 
point: this can be approached by using the grid lines to guide the dragging movement, and varying 
direction systematically (Figure 7.1.2). Using these findings, it is then possible to work out an 
effective way of dragging along the grid lines (Figure 7.1.3). An alternative strategy depends on 
framing the problem quite differently: in terms of finding the unknown home’ to which the defining 
point must be dragged in order to send its image correspondingly home (Figure 7.1.4). In particular, 
hiding the coordinate grid is likely to favour the development of this type of strategy. One way of 
identifying this home’ is simply to reach it by some means or other. But a more satisfying way is to 
predict its position by analysing the general relationship between the coordinates of the defining 
point and its image, something which can be readily inferred from a relatively small number of 
cases.  

 
Figures 7.1.1-4: Strategies for ‘sending’ a transformed point ‘home’. 
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Figures 7.1.5-8: Strategies for analysing the transformation acting on a point. 

A more formal counterpart of this activity simply sets the task of analysing the relationship 
between the defining point and its image (Figure 7.1.5), a relationship which can be conceived in 
both geometric and algebraic terms. Eyeballing the displayed coordinates is the obvious numeric-
algebraic strategy. Geometrically, one tactic is to find where defining and image points coincide: in 
this case, only at the origin (Figure 7.1.6). This suggests constructing the segments between the 
origin and each of the points (Figure 7.1.7), and exploring the relationship in these terms. An 
ensuing tactic is to find special positions of this configuration by dragging (as suggested in Figure 
7.1.7), suggesting that the two segments remain perpendicular. A stronger unifying strategy is to 
construct the rectangles formed by dropping perpendiculars from the two points to both the axes. 
This provides the means for a fuller geometrical analysis in terms of the four congruent triangles 
created, linked to an algebraic analysis in which the sides of each rectangle are directly related to 
the coordinates of the respective point  (Figure 7.1.8). 

7.2  Transformation of line graphs 
This example shows how the tool already used to analyse line graphs can be adapted so as to help 
analyse the effects of transformations on such graphs.  
This is illustrated through the example of reflections in a vertical mirror line. The basic intercept-
gradient-tool is adapted by construction of its reflected image (including the y-axis) in a vertical 
mirror line (as shown in Figure 7.2.1). The mirror line can be repositioned by dragging (as shown 
in Figure 7.2.2).  

  
Figures 7.2.1-2: Development of a geometric tool to analyse reflected graphs. 
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Figures 7.2.3-6: Application of a geometric tool to analyse reflected graphs. 

Once a linear function has been graphed (as shown in Figure 3.3.2.3) the original intercept-
gradient-tool can be positioned on the graph (as shown in Figure 3.3.2.4), so that the reflection of 
the tool now indicates the position –and equation- that a reflection of the graph would take12. By 
dragging point B on the tool to the position where the graph cuts the mirror line, so that B and B’, 
and P and P’ coincide on the mirror line (as shown in Figure 3.3.2.5) the relationship between the 
gradients of the graph and its reflection becomes clearer: opposed horizontal shifts produce 
identical vertical shifts – and hence one gradient is the negative of the other. Similarly, by dragging 
point B on the tool to the position where the graph cuts the reflected y-axis, so that B’ coincides 
with the intercept of the reflected graph on the y-axis, P coincides with A’ and P’ with A (as shown 
in Figure 3.3.2.6) the relationship between the intercepts of the graph and its reflection becomes 
clearer: the intercept of the reflected graph and the intersect of the original graph with the reflected 
axis have the same vertical position –  which can be further related to the gradient of the graph and 
the position of the mirror line. Again, the main goal of working with this tool system is to establish 
generic schemes concerning the relationship between a line graph and its reflection. 

7.3  Transformation of function graphs 
This final section focuses on a more generic approach to analysing the effects of transformations on 
function graphs. The example of translation will be used, but the approach is wholly generalisable. 
The worksheet shown in Figure 7.3.1 creates a point free to move on the graph (defined by the 
displayed formula which can be edited to any other acceptable expression) and plots its image 
under a translation (defined by the segment at the foot of the sheet which can be modified by 
dragging the endpoint). On this worksheet, the movement of the free point on the graph has been 

                                                
12 Note that the function corresponding to the reflected line is not itself graphed, although the tool provides its equation. 
This means that properties of the reflected graph have to be deduced through appropriate positioning of the tool on the 
original graph.  
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animated, and the path of its image point traced, so producing the transformed graph of the 
function. In the worksheet shown in Figure 7.3.2, animation and trace have been removed; instead 
the image of the graph has been constructed directly as a geometrical object in its own right. 

  
Figures 7.3.1-2: Basic templates for investigating and analysing translated graphs. 

There are various ways in which the possibility of superimposing a further function graph can be 
exploited. One is to view the constructed locus and then attempt to fit a new function to it. Another 
is to predict the new function before viewing the locus, and then see if these fit. Equally, this new 
function can be defined in different ways; either by an independent expression; or by one 
dependent on the original function, such as f(x+2). There are, then, a number of interesting variants 
of this task, each of which has particular didactical characteristics. In Figure 7.3.3, a translation of 
+2 parallel to the x-axis has been fallaciously associated with the graph of y=f(x+2). In Figure 
7.3.4, the translation has been reversed to produce a fit between new function and transformed 
graph, so correctly associating a translation of –2 with y=f(x+2). Other interesting tasks include 
trying to fit transformed graphs to their originals (as in the examples in Figure 7.3.5-6).  

  
Figures 7.3.3-4: Matching geometric transformation with algebraic reformulation. 

  
Figures 7.3.5-6: Transforming graphs to match themselves. 
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8 Geometric and algebraic modelling of visual images 
Historically, the physical sciences provided the modelling problems which stimulated the synthesis 
of algebraic and geometric ideas and methods to develop tools for the analysis of covariation. The 
capacity to import photo or video images of physical pheomena into a DGS opens up new 
possibilities of exploiting this key connection. This will be illustrated by using the parabola tool 
introduced in §6 to analyse several images of this type.  

8.1 Modelling a crater shadow 
To provide, first, an example of purely geometric modelling. Figure 8.1.1 shows a photograph of a 
crater at the atomic test site in Nevada13, which has been imported into a GSP file as a fixed 
background onto which the parabola tool has been superimposed. Dragging focus and directrix in a 
process of trial and improvement suggests that a parabola cannot be fitted to the rim of the crater 
(Figure 8.1.1) but can be fitted to the outline of the shadow (Figure 8.1.2). An extension is to 
explore the relationship between the axis of the parabola and the lightray in the photograph. 

 
Figures 8.1.1-2: Fitting the parabola tool to a crater shadow. 

8.2 Modelling a suspension bridge 
Bridges provide a valuable source of lines and curves for geometric and algebraic modelling 
(Oldknow, 2002). Figure 8.2.1 shows a photograph of the Clifton suspension bridge14, which has 
been imported into a GSP file as a fixed background. Figure 8.2.2 shows the result of copying and 
pasting the parabola tool into the window, and then dragging focus and directrix so as to fit the 
parabola to the main cable of the bridge through a process of trial and improvement.    

                                                
13 Permission sought for reproduction [Found at http://www.parabola.org/magazine/current.html.] 
14 Permission sought for reproduction [Found at  http://www.clifton-suspension-bridge.org.uk/.] 
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Figures 8.2.1-2: Fitting the parabola tool to the bridge cable. 

However, the fitting process can be guided geometrically by first constructing a line segment 
linking the highest points of the bridge towers, then the perpendicular to the segment passing 
through its midpoint, so indicating the axis of symmetry of the bridge and its main cable (Figure 
8.2.3). The focus of the parabola tool can be merged to lie on this axis, as considerations of 
symmetry suggest that it must. But because they have been independently constructed, it is not 
technically possible to likewise constrain the directrix to be perpendicular to the axis. However, 
constructing the perpendicular to the directrix through its intersection with the axis provides an 
indicator for this criterion (Figure 8.2.4). Alternatively, the parabola tool can be reconstructed, 
incorporating the additional constraints of focus lying on axis and directrix perpendicular to axis.  

 
Figures 8.2.3-4: Analysing the fitting of the parabola tool to the bridge cable. 

Similarly, the constructed lines indicate one suitable position for coordinate axes, allowing a 
corresponding algebraic expression to be fitted to the main cable. Again, while this task can be 
approached through trial and improvement, it is also possible to capitalise on algebraic analysis to 
greatly simplify the problem. In the approach shown in Figure 8.2.5, the half-span of the bridge has 
been taken as the unit measure, so that the tops of the bridge towers lie at positions (-1, 0) and (1, 
0). A quadratic polynomial passing through these points must take the form c(x + 1)(x - 1). Reading 
off the minimum value of the polynomial at around (0, -0.22) indicates the value of c required, 
allowing the expression to be graphed to be deduced directly without any trialling (Figure 8.2.6). 
There are further variants if alternative positions for the axes are considered.  
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Figures 8.2.5-6: Fitting an algebraic graph to the cable . 

8.3 Modelling a water jet 
A further example, offering similar potential for analysis, is a jet of water from a drinking 
fountain15. Here, it is particularly interesting that the parabola appears to provide a better model for 
the jet as it rises from the nozzle than as it then falls away. (Figure 8.3.1).  

 
Figure 8.3.1: Fitting the parabola tool to a water jet. 

 
 

                                                
15 Reproduced with the permission of Dr F Wattenberg and the Journal of Online Mathematics and Its Applications . 
[Found at http://www.joma.org/vol2/articles/wattenberg/JOMA_article/water_fountain.html].   
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